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Περίληψη

Η συναισθηματική ανάλυση κειμένου, είναι ένας κλάδος της Μηχανικής Μάθησης που

αποσκοπεί στην αυτόματη αναγνώριση υποκειμενικής πληροφορίας σε γραπτές πηγές. Λόγω

της ανάπτυξης του διαδικτύου και συνεπώς του όγκου πληροφοριών που διανέμονται στα κοι-

νωνικά δίκτυα, πολλαπλές εφαρμογές χρησιμοποιούν αυτή την τεχνολογία για να βελτιόσουν

την λήψη των αποφάσεών τους.

Σκοπός αυτής της Διπλωματικής εργασίας είναι η διερεύνηση μιας μεθόδου προσαμοργής

για την βελτίωση της αυτόματης, δυαδικής αναγνώρισης συναισθήματος σε προτάσεις (θε-

τική/αρνητική), με τη βοήθεια τεχνικών Θεματικής Μοντελοποίησης. Σε σύγκριση με τις

κλασσικές μεθόδους που χρησιμοποιούν μια ποκιλια λεξιλογικών χαρακτηριστικών και λεξι-

κών σαν είσοδο σε ταξινομητές, τα θεματικά μοντέλα έχουν την ικανότητα να συλλαμβάνουν

το νοηματικό πλαίσιο στο οποίο ανήκει μια πρόταση και έτσι να εκτιμούν τη σημασία της με

μεγαλύτερη λεπτομέρεια.

Το πρώτο μέρος της Διπλωματικής εργασίας, ασχολείται με τις τεχνικές Θεματικής μο-

ντελοποίησης οι οποίες διευκολύνουν την εξαγωγή πληροφορίας από αδόμητες συλλογές κει-

μένων. Περιγράφεται η Latent Dirichlet Allocation (LDA) τεχνική, που προσπαθεί να ανα-
κατασκευάσει την διαδικασία συγγραφής ενός κειμένου και συνεπώς να παράγει τις θεματικές

ενότητες από τις οποίες αποτελείται. Στο δεύτερο μέρος, τα μοντέλα διανυσματικού χώρου

διερευνόνται, τα οποία στοχεύουν στο να εκφράσουν τη σημασιολογική ομοιότητα μεταξύ λέξε-

ων, κωδικοποιώντας τη γλώσσα ως μια μαθηματική κατανομή και συνεπώς σχηματίζοντας ένα

σημασιολογικό χώρο. Επιπλέον, παρουσιάζονται μοντέλα στο χώρο των συναισθημάτων, τα

οποία κωδικοποιούν το συναίσθημα των λέξεων, και συγκεκριμένα πώς είναι εφικτό το πέρα-

σμα από το σημασιολογικό στον συναισθηματικό χώρο μέσω ενός μοντέλου αντιστοίχισης,

χρησιμοποιώντας ένα λεξικό, ώστε να εκτιμηθεί το συναίσθημα νέων λέξεων.

Ο αλγόριθμος που παρουσιάζεται επικεντρώνεται κυρίως στην προσαρμογή του Σημασιο-

λογικού χώρου, και ονομάζεται Σημασιολογικό Μοντέλο Προσαρμογής (ΣΜΠ). Στην προ-

σέγγιση αυτή, ο σημασιολογικός χώρος μιας πρότασης αναπαρίσταται ως ένα ζυγισμένο μείγμα

από διαφορετικά θεματικά-σημασιολογικά μοντέλα με βάση την εκτίμηση ενός εκπαιδευμένου

πιθανοτικού θεματικού μοντέλου. Η τελική εκτίμηση του συναισθήματος μια πρότασης είναι

το αποτέλεσμα ενός σημασιολογικού-συναισθηματικού μοντέλου που ενώνει τον σημασιολογι-

κό και συναισθηματικό χώρο μέσω μιας αντιστοίχισης και ενός υπάρχοντος συναισθηματικού

λεξικού.

Η απόδοση του ΣΜΠ μοντέλου μπορεί να εκτιμηθεί τόσο σε εφαρμογές σημασιολογικής

ομοιότητας λέξεων αλλά και σε αναγνώριση συναισθήματος προτάσεων, δείχνοτας μια βελτίω-

ση στη μέτρηση της συσχέτισης με τιμές ομοιότητας δοσμένες από ανθρώπους, παράλληλα με

μια αύξηση της ακρίβειας ταξινόμησης για προτάσεις, σε δεδομένα γενικού περιεχομένου αλλά

και από το Twitter σε σύγκριση με ένα σύστημα που δεν χρησιμοποιεί θεματικές ενότητες.
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Abstract

Affective Text Analysis, is a field of Machine Learning that aims to automatically
detect subjective information in textual data. Due to the development of the World
Wide Web and consequently the amount of opinions distributed in social media, numerous
applications use this technology to improve their decision making.

The scope of this Diploma Thesis is to explore an adaptation algorithm for improving
the automatic binary sentiment classification of sentences in text (positive/negative), with
the help of Topic modeling techniques. Compared to classic approaches that use a variety
of lexical features and existing annotated lexicons as input to classifiers, topic models are
able to capture the context of a sentence and thus estimate its meaning in greater detail.

The first part of the thesis, is devoted to Topic Modeling techniques that facilitate the
extraction of meaningful information from unstructured collections of documents. The
Latent Dirichlet Allocation (LDA) method is described which tries to reconstruct the
process of writing a document and generate the topics that it consists of. In the second
part, different Vector Space Models are investigated, which aim to express how similar
a word is to another, by representing the language as a distribution, forming a semantic
space. Additionally, Affective Space Models, that measure the sentiment of words are
explored, and in particular, how one can create a mapping from the semantic to the
affective space with the help of a small lexicon in order to estimate the sentiment of new
words.

The presented algorithm focuses on the adaptation of the Semantic space, named
Semantic Model Adaptation (SMA). In the SMA approach, the semantic space of each
sentence is represented as a weighted mixture of different topic-semantic models according
to a trained probabilistic topic model. The final estimation of a sentence’s score is the
result of a semantic-affective model, that connects the semantic with the affective space
through a mapping and an existing annotated affective lexicon.

The proposed model can be evaluated on both pair-wise semantic similarity and sen-
tence affective estimation tasks, showing a significant improvement of correlation with
human annotations, as well as an important increase in the classification accuracy for
sentence-level binary sentiment detection in generic and Twitter data, compared to a
baseline method that does not use topic models.

Keywords

affective analysis, sentence-level sentiment analysis, topic modeling, LDA, distribu-
tional semantic models, word2vec, adaptation
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Chapter 1

Introduction

1.1 Motivation

Opinions play a major role in human activities as they influence people’s behaviors.
The growth of the World Wide Web and the transformation of information into digital
form, has enabled users to access abundant amounts of data as well as share their opinions
and feelings about their surroundings instantly. A lot of actions show this kind of influence
in people’s lives, from researching movie reviews to medicine, through the internet.

However, the time and effort of analyzing such amounts of data is typically proportional
to their size, making their processing extremely difficult for an average human. For a lot
of years, surveys, polls and focus groups were conducted with an objective to gather as
much information as possible in order to capture the general preference or dissatisfaction
of the public about products, services or other contemporary topics. Therefore, the field
of computer science is involved with Affective Text Analysis, which means the automated
detection of subjective information, alternatively known as emotion recognition, in textual
sources, aiming to solve this problem. Yet, the rise of the social media, such as Facebook
and Twitter has turned the attention of this research to small pieces of text usually
sentences, as the main way of expression in social websites.

There are many ways to estimate the expressed opinion of a sentence, as is analyzed in
Chapter 2. However, a known problem in this task is the large variety of topics detected in
sentences and how they influence their interpretation. The meaning of words changes not
only in different domains but also when using different writing style (e.g. formal, sarcastic)
resulting multiple word senses and meanings. The majority of labeled data available are
domain-specific and thus fail to provide a solution for tasks in different domains. One
popular way of overcoming this problem is the Topic Modeling of general purpose data.
These methods try to represent sentences as a probabilistic mixture of different topic-
specific models and can lead to a more accurate estimation of the polarity of a sentence
(positive/negative in the simplest of cases). However, in order to finally determine if a
sentence is positive or negative, different scientific areas need to be combined such as
Distributional Semantic Models and Affective Models.

1.2 Affective Text Analysis

The analysis of the emotional content of text is known as Affective Text Analysis.
“Affect” is an umbrella-term that describes feelings, emotions, moods and temperaments
and is used as often as the term “Emotion” and “Sentiment”. A task in affective analysis

21



22 Chapter 1. Introduction

can be determined by the type of emotion to detect (e.g. anger, happiness) or the level
of analysis to perform (words, sentences, paragraphs, documents, collections). The main
goal of this field is to identify the opinion of the author or the reader, in smaller or bigger
sections of a document. It is a wide area that is strongly connected with the field of
Natural Language Processing (NLP) and Distributional Semantic Models.

Generally, the domain which is involved with the development of intelligent systems
that are able to perceive and encode sentiment is known as Affective Computing. In order
to build systems as such, we need to represent human emotions in a scale understandable
by computers.

1.2.1 Emotion Representation

Emotions can be conceptualized either in discrete or in dimensional view. Paul Ekman
determined the six basic emotions that are common among people in all cultures: anger,
happiness, surprise, disgust, sadness and fear. 1.

For both theoretical and practical reasons researchers define emotions according to one
or more dimensions. Wilhelm Max Wundt, the father of modern psychology, proposed
that emotions can be described by three dimensions: “pleasurable versus unpleasurable”,
“arousing or subduing” and “strain or relaxation” 2. Additionally, Harold Schlosberg
named three dimensions of emotion: “pleasantness-unpleasantness”, “attention-rejection”
and “level of activation” (Schlosberg (1954)). The basic emotional dimensions are de-
scribed below:

Valence is a subjective feeling of pleasantness or unpleasantness. Ranges from highly positive
to highly negative. It is also called Pleasure-Displeasure. For instance, both ‘anger’
and ‘fear’ are unpleasant emotions, and score high on the displeasure scale. However
‘joy’ is a pleasant emotion.

Arousal is a subjective state of feeling activated or deactivated. Ranges from calming or
soothing to exciting or agitating. Alternatively it can be found as Arousal-Activation,
which is the dimension of emotion that expresses in what degree a person is ready-to-
act/aroused or relaxed. Activation/Arousal measures the intensity of the emotion.
For instance, while both ‘anger’ and ‘rage’ are unpleasant emotions, ‘rage’ has a
higher intensity or a higher arousal state. However ‘boredom’, which is also an
unpleasant state, has a low arousal value.

Dominance represents the controlling and dominant nature of the emotion. For instance while
both ‘fear’ and ‘anger’ are unpleasant emotions, ‘anger’ is a dominant emotion, while
‘fear’ is a submissive emotion.

Consequently, dimensional models of emotion attempt to conceptualize human emo-
tions by defining where they lie in two or three dimensions. Most dimensional models
incorporate valence and arousal while they may not use intensity dimensions as domi-
nance is strongly correlated with arousal. The two models that are most prominent are a)
the circumplex model and b) the Plutchik’s model.

The circumplex model of emotion was developed by James Russell (Russell (1980)).
This model suggests that emotions are distributed in a two-dimensional circular space,
containing arousal and valence dimensions. Arousal represents the vertical axis and valence

1https://www.paulekman.com/wp-content/uploads/2013/07/Basic-Emotions.pdf
2http://psychclassics.yorku.ca/Wundt/Outlines/

https://www.paulekman.com/wp-content/uploads/2013/07/Basic-Emotions.pdf
http://psychclassics.yorku.ca/Wundt/Outlines/
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represents the horizontal axis, while the center of the circle represents a neutral valence
and a medium level of arousal. In this model, emotional states can be represented at any
level of valence and arousal, or at a neutral level of one or both of these factors.

(a) Circumplex model representation. (b) Plutchik’s wheel of emotions.

Figure 1.1: Different representations of emotion.

Robert Plutchik offers a three-dimensional model that is a hybrid of both basic-complex
categories and dimensional theories (Plutchik (2001)). It arranges emotions in concentric
circles where inner circles are more basic and outer circles more complex. Notably, outer
circles are also formed by blending the inner circle emotions. Plutchik’s model, as Russell’s,
emanates from a circumplex representation, where emotional words were plotted based on
similarity.

Based on these affective spaces, all emotions can be represented. In the simplest case,
the estimation can be made using only the valence dimension, for two classes, positive
(high valence) and negative (low valence), three classes, if the neutral class (zero valence)
is included (which does not contain any sentiment), or five classes and more, according to
the application and how much the affective scale needs to be extended.

Finally, subjectivity or objectivity of a text section is another category of ‘sentiment’.
However, in the case of sentences, as it is quite often to contain more than one sentiment,
sometimes an Aspect-Based Sentiment Analysis is more appropriate, which detects the
expressed opinion towards a specific aspect or person contained in the sentence.

1.2.2 Topic Models

Topic Models, also called Statistical Topic Models, is a class of mathematical models,
that embody a set of assumptions that contribute to the discovery of the hidden thematic
structure of documents, using probability distributions. More specifically, the basic as-
sumption of topic modeling techniques is that each document can be viewed as a mixture
of multiple topics which are represented as probability distributions. The term “Topic”
usually describes large thematic areas such as “computers”, “health”, “movies” etc, or can
characterize more specific domains such as ‘price’, ‘quality’ etc. However, when studying
Topic Models, the same term describes a topic as a distribution over a fixed vocabulary of
words. Alternatively, a topic consists of a cluster of words that frequently occur together
in this domain. Topic modeling is a frequently used text-mining tool for analyzing large
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collections of text. The main advantage of these models is that they are unsupervised and
consequently do not require labeled data, which are hard to find.

Using the context of words in documents, topic models can identify and connect words
with similar meanings as well as, distinguish between uses of words with multiple meanings
(word disambiguation). Topic Models combined with Affective analysis can be used to
improve the estimation of words affective scores. The most well-known approaches include
learning topic-based sentiment labels when capturing simultaneously sentiments and topics
in document text collections. Additionally, aspect-based sentiment analysis can benefit
from topic modeling techniques that are able to distinguish the different aspects a review
addresses.

1.2.3 Distributional Semantics

Distributional Semantics is a research area that develops and studies theories and
methods for quantifying and categorizing semantic similarities between linguistic items
based on their distributional properties in large samples of language data. The basic idea
of distributional semantics can be summed up in the so-called Distributional hypothesis:
“Linguistic items with similar distributions have similar meanings” or in other words,
“Words that tend to occur together in pieces of text, tend to have similar meaning”.

Distributional Semantic models (DSMs), i.e. models that try to encode the meaning
of words and larger sections of text into a mathematical representation of a feature-vector,
are closely related with Affective Text analysis. The DSMs can be combined with affective
text analysis methods in order to capture the sentiment of words. The representation of
words as semantic feature vectors can be used, not only as additional features in sentiment
classification, but also as a means to convey sentiment through the estimation of similarity,
relatedness, synonymy and multiple other relations between words, with the help of linear
algebra, making it a strong tool for the polarity recognition task.

1.3 Thesis Scope & Contribution

The main objective of this Thesis is to explore an adaptation of Distributional Semantic
Models algorithm for identifying the polarity of sentences between two classes, positive or
negative.

Figure 1.2: Thesis main research areas.
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There are three models that are combined in the proposed approach, Topic Models,
Semantic Models and Affective Models, using some basic assumptions as shown in figure
1.2. The pair one-two is directly connected by the fact that words can have multiple
meanings in different domains, the pair two-three is directly connected with the assumption
that “Semantic similarity implies affective similarity” and the pair one-three is indirectly
connected through the assumption that before the estimation of a sentence’s polarity we
can firstly identify the topics it contains.

The presented technique uses the Latent Dirichlet Allocation (LDA) Topic Modeling
method that is able to extract meaningful information from unstructured text, by split-
ting collections of documents into the topics they may contain. Furthermore, the semantic
representation of words is explored in each topic, in order to extract comprehensible in-
formation for the relations between words, and in particular identify their similarity. The
proposed approach is based on adapting the semantic space of each sentence in topic-
level, aiming to better describe its meaning. Finally in order to identify sentiment in
sentences, a mapping from the semantic to the affective space is examined, by exploiting
the assumption that “semantic similarity implies affective similarity”.

The contribution of this Thesis lies in the improvement of binary classification in
sentences. In particular, we aim not only to improve the classification accuracy but also
the correlation in terms of valence score in sentence-level. The main difference between
topic models and lexicon-based ones, is that they can achieve word disambiguation by
identifying a sentence’s context. On the contrary, lexicon-based classification methods,
fail to capture the context of words included in a sentence and may produce misleading
results. The evaluation on word-pair similarities and sentence-level polarity classification,
shows that classification accuracy and correlation improve with the integration of topic-
trained semantic models.

This topic-semantic models adaptation scheme was also part of the system submitted
to the SemEval-2016 competition, Task 4: Sentiment Analysis in Twitter, in subtasks A:
Message Polarity Classification and B: Tweet classification according to a two-point scale,
ranking first in Task B (Palogiannidi et al. (2016)).

1.4 Thesis Organization

This diploma thesis is organized in seven Chapters and one Appendix.

In Chapter 2 a large description of the bibliography is provided, divided in four sections,
according to the fields that the thesis addresses. The first section, describes different senti-
ment analysis approaches that were investigated with a view to detect the polarity (usually
three class, positive-negative-neutral) of sentences and reviews (small paragraphs). The
second section, introduces the Distributional Semantic Models that are widely used to
discover word similarities. The third section, describes the evolution of topic modeling
techniques over time and the state-of-the-art algorithms that are used nowadays. Finally,
the fourth section is a literature review on Sentiment Analysis techniques that incorporate
Topic Modeling as a comparison with the one proposed in this Thesis.

In Chapter 3 the Topic Modeling technique used as part of the algorithm is described.
The functionality of the Latent Dirichlet Allocation (LDA) technique is broadly explained
in a theoretical and practical level, along with its statistical structure.
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In chapter 4 two different Natural Language Processing models are described. In the
first part, Semantic models, which aim to represent the meaning of words as mathematical
structures of vector spaces are analyzed along with the Word2Vec model that was used for
the experiments. In the second part, an existing Affective model, that tries to capture the
emotional information of words is analyzed. This model takes advantage of an existing
affective lexicon in order to predict the sentiment of unknown words by creating a mapping
from the semantic to the affective space.

Chapter 5 is the most important part of this work, as it outlines the novel algorithm
that aims to improve sentiment classification in sentences, using the aforementioned tools.
The idea of the Semantic Model Adaptation (SMA) is illustrated and in particular how the
semantic space of a sentence can be represented as a mixture of multiple topic-semantic
models.

Chapter 6 includes all the results and the experimental procedure for the different ex-
periments that were conducted, on different datasets. Firstly, the topic models that were
created are evaluated with different analysis methods. Secondly, the performance of SMA
is examined on pair-wise semantic similarity and on sentence-level polarity classification
tasks.

Chapter 7 includes a summary of this work, as well as conclusions that resulted from
the different experiments. Additionally, an improved version of the SMA algorithm is
presented as on-going words. Finally, an on-going work idea and directions for possible
future work are illustrated.

In appendix A the Gensim toolbox is described and more specifically two of its basic
implementations that were used in this thesis, the LDA algorithm for Topic Modeling
and the Word2Vec semantic model. The necessary commands for data pre-processing and
models construction are presented along with some outputs during the execution.



Chapter 2

Related Work

2.1 Sentiment Analysis in Reviews and Sentences

Most of the published works, are focused on detecting sentiment in review-paragraph
level, as an effort to identify whether the overall expressed opinion is positive, negative or
neutral. However, the immediate rise of Social Media has led researchers to sentence-level
sentiment extraction. Techniques for both levels are explored here, as there are closely
related.

The approaches followed in sentiment analysis, can be classified into 3 major cate-
gories: a) Machine learning approaches, supervised (using labeled data) and unsupervised
(with little (semi-supervised) or no labeled data) that make explicit use of classifiers,
b) Semantic orientation approaches, which are based on positive and negative sentiment
words contained in the evaluation text and c) Lexicon-based approaches that use existing
annotated sentiment lexicons of words and small phrases. The second category can be
divided into i) corpus-based techniques that try to identify word relations based on their
co-occurrence in text, and ii) dictionary-based techniques which use synonyms, antonyms
and word senses stored in lexical databases that help determine word sentiments. Ad-
ditionally, combinations and hybrid approaches of the above techniques are commonly
used.

Figure 2.1: Sentiment Analysis categories.

2.1.1 Machine Learning approaches

Starting with the Machine Learning approaches, their objective is to estimate the
polarity of sentences or reviews in usually a two or three-class classification problem. The

27
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general procedure steps are the following: Firstly obtain a corpus of training data, secondly
represent each document/sentence as a feature vector, learn a model from these data by
training a classifier and then classify the unseen/test data into a category using the trained
classifier.

The original work for sentiment detection in reviews, was presented by Pang et al.
(2002). In their approach, they experimented with three different classifiers, on a Movie
Reviews dataset, for a binary classification problem (positive-negative): Naive Bayes (NB),
Maximum Entropy (ME) and Support Vector Machines (SVM). The features that were

Classifier Formula

Naive Bayes PNB(c|d) :=
P (c)·(

∏m
i=1 P (fi|c)ni (d))
P (d)

Maximum Entropy
PME(c|d) := 1

Z(d)exp(
∑

i=1 λi,cFi,c(d, c))

Fi,c(d, c
′) =

{
1 if ni(d) > 0 and c = c′

0 other

SVM −→w =
∑

j ajcj
−→
dj , aj ≥ 0

Table 2.1: Basic classifiers tested in Pang et al. (2002).

used varied from unigrams (single words) to adjectives and multiple combinations, as well
as the representation of the feature vector differed from binary notation (existence - non
existence of a word-feature) to frequency (of word-feature in the review). SVM proved
to give the best performance compared to NB, but overall, they concluded that these
classifiers perform better on topic-based categorization rather than sentiment classification.
Afterwards, Pang and Lee (2004) used subjectivity detection as a prior step to improve
performance (figure 2.2). In particular, they trained a subjectivity detector to classify
sentences into subjective and objective, discard the subjective and pass the objective to a
classifier. They showed that the results of subjectivity, work as a better and cleaner input
to the classifier than the original document, as they contain more sentimental (subjective)
information.

Figure 2.2: Polarity classification via subjectivity detection Pang and Lee (2004).

In order to extend sentiment analysis, Pang and Lee (2005) investigated the problem
of five scale polarity of a review (as Schler (2005)), using a multi-class SVM (one-versus-
all (OVA)), Regression (SVR) and metric labeling (relation between items and labels)
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algorithms. As an extension Goldberg and Zhu (2006) represented documents in a graph
of labeled and unlabeled data, by connecting them using a distance measure from the
document features. The objective of this approach was to use unlabeled data for training,
as labeled ones are few, which proved to give better performance than ignoring unlabeled
data. In order to identify sentiment for the different aspects contained in a review, Shimada
and Endo (2008) experimented with SVMs, SVR, Maximum Entropy and cosine similarity
measure algorithms along with various feature extraction methods.

2.1.2 Feature Space in ML

Moreover, another important factor in these models is the type of features used. As
Machine Leaning approaches basically use classifiers in order to estimate sentiment in
textual sources, the data they need must be encoded in the form of a vector. Generally,
these vectors can contain lexical or non lexical information as well as numerical values.

Features that belong to the first category, can be derived from any textual source.
Assuming that a vocabulary is extracted from the training dataset, the words it contains
can be used as features. More specifically, words that express sentiment, prepositions, very
long words, the number of a words possible senses (Malandrakis et al. (2013)), even stop-
words (words like ‘I’, ‘the’) can be encoded in a bag-of-words (BOW) format and serve as
features that represent a document. Concerning the second category, non-lexical features
can be Part-of-Speech (POS) tags (adjectives, verbs, adverbs), punctuation, emoticons,
urls or references, mainly derived from social media sources like Twitter. Finally, numerical
features include: binary representation (presence or not of this term in the document),
occurrence frequency (frequency of this term in the documents), TF-IDF scores (term
frequency - inverse document frequency), statistical values of affective scores (min, max,
mean, std), cluster labels and values produced by Distributional Semantic Models.

Strongly related with the lexicon-based category, multiple machine learning techniques
use sentiment lexicons to improve their performance. Osherenko and André (2007) pro-
posed to reduce the dimensionality of word feature vectors and use only small sets of
affective words as features obtained from a lexicon. This technique, evaluated with SVM,
showed no improvement in recognition performance but it can be concluded that feature
reduction can be achieved without losing important information. Finally, Lin et al. (2012)
investigated the use of different features in classification tasks.

2.1.3 Semantic Orientation Approaches

Semantic orientation approaches have proved to improve performance, as they are
based on the relations between words in text. Generally, the state-of-the-art methods
are based on the observation that similar opinion words tend to appear together in a
corpus. Consequently, one can assume that if they appear frequently in the same context
they will express the same sentiment. This is a statistical approach that shows that
frequent occurrence of words in a document implies their closeness in meaning. The first
idea was proposed by Turney (2002). In their work, the Point-wise Mutual Information
(PMI) criterion was used to express the statistical dependence between two words. In
particular, they measured the sentiment polarity of a word w as the difference between
the the PMI value of word w with word “excellent” and the PMI value of word w with
the word “poor” (equation 2.2). Additionally in Turney and Littman (2003) a set of
positive and negative words is used instead of only ‘excellent’ and ‘poor’. Therefore, the
difference of the PMI sum is calculated (equation 2.3). As an extension to this work,
Chaovalit and Zhou (2005) used the Google search engine and measured the number
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of hits returned for a pair of words query, in order to better estimate their relation.
Moreover, Read and Carroll (2009) extended this approach by employing Semantic Spaces
and Distributional Similarity as weakly-supervised methods. They require only a large
collection of unlabeled data resulting a less domain-dependent performance. In the same
context, Baroni and Lenci (2010) presented in their paper how information about the
relations of words can be extracted from a corpus as word-link-word tuples arranged
into a third-order tensor. This type of representation allows information to be used in
multiple tasks such as (as mentioned in the paper) modeling word similarity judgments,
discovering synonyms, concept categorization, predicting selectional preferences of verbs,
solving analogy problems, classifying relations between word pairs, harvesting quality
structures with patterns or example pairs, predicting the typical properties of concepts,
and classifying verbs into alternation classes. More information about Semantic models
can be found on Chapter 2, Section 2.2 and Chapter 4.

PMI(word1, word2) = log2

( P (word1
⋂
word2

P (word1)P (word2)

)
(2.1)

SO(phrase) = PMI(phrase, “excellent”)− PMI(phrase, “poor”) (2.2)

SO − PMI(word) =
∑
pword
∈Pwords

PMI(word, pword)−
∑
nword
∈Nwords

PMI(word, nword) (2.3)

As far as the second sub-category of semantic orientation tasks is concerned, the most
well-known tool is WordNet (Fellbaum (1998)). It is a large database that provides dif-
ferent kinds of information about the relation between words, as well as their multiple
senses, which can help in sentiment prediction. The possibility to disambiguate the senses
of words with WordNet leads to the identification of opinions in text. Kamps et al. (2004)
proposed to use the relative shortest path distance of the “synonym” relation, whereas
Kim and Hovy (2004) recommended to obtain a list of sentiment words by expanding an
initial set with synonyms and antonyms of these words from WordNet. In their work,
the polarity of the word is determined by the relative count of positive and negative syn-
onyms of this word. In ? a Sentiment-Analyzer tries to extract the sentiment about a
subject from online documents. They do not detect the overall sentiment in a review but
determine the sentiment about an exact aspect mentioned in the review, by extracting
features about topics, features about sentiment and relations between subjects and senti-
ments with the help of a dictionary and a sentiment pattern database. Also, Andreevskaia
and Bergler (2006) presented a method for extracting sentiment-bearing adjectives from
WordNet using the Sentiment Tag Extraction Program (STEP).

2.1.4 Lexicon-based approaches

Finally, dictionary approaches use existing lexicons with opinion polarities for words
and small phrases. Some of the most known lexica are presented in the table below.
These affective lexicons can be used to predict the sentiment expressed in a document
or a sentence, by identifying the opinionative words they contain and compute the final
sentiment with the help of simple rule-based algorithms (Zhu et al. (2009)). In their
work Taboada et al. (2011) use the Semantic Orientation CALculator (SO-CAL) which
exploits dictionaries of words annotated with their semantic orientation (polarity and
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Affective Lexica Source

General Inquirer http://www.wjh.harvard.edu/~inquirer/

WordNet-Affect http://wndomains.fbk.eu/wnaffect.html

Senti-WordNet Esuli and Sebastiani (2006)

Affective Norms for English Words Bradley and Lang (1999)

Dictionary of Affect of Language http://www.hdcus.com/

Bing Liu Opinion Lexicon http://www.cs.uic.edu/~liub/FBS/

AFINN Nielsen (2011)

Table 2.2: List of most known existing affective dictionaries

strength), and incorporates intensification and negation in order to predict sentiment in
text. Generally, all approaches tend to use sentiment lexicons as features to extract new
polarity scores for unseen words. The approach of Malandrakis et al. (2011a), which uses
an existing lexicon not only to predict words scores but also to determined the polarity of
sentences is further analyzed in chapter 4. Lastly, Jijkoun et al. (2010) present a method
for automatic generation of topic-specific subjectivity lexicons from a general purpose
polarity lexicon that allow users to pin-point subjective on-topic information in a set of
relevant documents.

2.2 Distributional Semantic Modeling

Harris was the first one to question if it is possible to model the language as a dis-
tribution (Harris (1954)). In his paper, he underlines that as language contains different
objects (e.g. words, phrases) with specific properties (features) it can be encoded in a
distributional structure, by measuring the occurrence of some objects with others. There-
fore, the distribution of an element can be represented as the sum of the other elements
surrounding it, i.e. as a vector whose each position corresponds to how many times these
elements where witnessed together (in the same environment). These are known as vector
space models (Schiitze (1993), Sahlgren (2006)). One can assume, that if we model words
as vectors these representations can express their meanings. However, this representation
is a property of language whereas the meaning of a word is the interpretation of a person,
and can potentially change.

Distributional semantics favor the use of linear algebra as computational tool and
representational framework. The basic approach is to collect distributional information
in high-dimensional vectors, and to define distributional/semantic similarity in terms of
vector similarity. As mentioned before, the main assumption of DSMs is that “Similarity
of context implies similarity of meaning”. By exploiting the properties of linear algebra,
multiple operations can be applied on or between vectors in order to extract different types
of information.

There is a rich variety of computational models implementing distributional semantics.
In the survey of Verma et al. (2011) Vector Space Models are examined for a general textual
semantic processing, by directly extracting linguistic features from a text collection. In
Latent Semantic Indexing (analyzed in the next section 2.3) one of the most simple DSMs
is constructed by forming an occurence term-document matrix (number of times a word
appears in a document, Deerwester et al. (1990)). The measure of similarity between two

http://www.wjh.harvard.edu/~inquirer/
http://wndomains.fbk.eu/wnaffect.html
http://www.hdcus.com/
http://www.cs.uic.edu/~liub/FBS/
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words can be calculated through the similarity of two vectors (rows) in the matrix. Baroni
and Lenci (2010) describe in detail the construction of distributional semantic models as
a distributional memory framework that is able to extract all semantic information from
a corpus and store it in third order tensors. They show that this type of information can
be used in different tasks and the evaluation results compare DSMs with state-of-the-art
methods for specific tasks. In the same direction, Iosif and Potamianos (2010) illustrate a
method to compute the semantic similarity between words in an unsupervised way with
the help of web-harvested data. Additionally, different types of features are investigated,
showing that counting the number of co-occurrences of words in a window (few words
before and after the word of interest - context based method) provide better performance
when measuring the correlation with human annotations, compared to counting in larger
sections (co-occurrence based method).

The last years, more and more different methods are introduced for distributional
models construction. Apart from the most common count-based context methods, the
most popular use neural networks, such as the Word2Vec model (Mikolov et al. (2013)) and
other approaches based on neural networks (Zeng et al. (2014), Mnih and Kavukcuoglu
(2013)) for evaluating similarity and other relation between words. The Glove model
(Pennington et al. (2014)), is a log-bilinear regression model that combines the advantages
of the two major model families in the literature: global matrix factorization and local
context window methods.

2.3 The Methods of Topic Modeling

In the fields of machine learning and natural language processing, a topic model (TM)
is considered as a type of statistical-generative model that helps in discovering abstract
“topics” that occur in a large collection of documents. In the bibliography, a generative
model is a Bayesian network which provides an description of an observed phenomenon. It
describes the conditional dependencies between random variables in a network along with
the relation of cause and effect. Topic models are probabilistic generative models. They
try to model a textual source and usually the generation process of this source by means
of a Bayesian network. Intuitively, given that a document is about a particular topic, one
would expect domain-specific words to appear in the document more or less frequently.
On the other hand, it is obvious that each document consists of multiple topics in different
proportions. Thus, topic modeling, tries to capture the information included in large text
collections with the help of statistics. The most known of it’s techniques, are based the
assumption of exchange-ability (Aldous (1985)): The order of words and documents can
be neglected. These techniques that are also included in the paper of Blei (2012) and are
presented below.

The first model to be studied was the Latent Semantic Indexing (LSI), also known
as Latent Semantic Analysis (LSA). It was analyzed by Papadimitriou et al. (1998) and
was firstly used in information extraction tasks. It aims at creating document vectors in
order to represent their semantic context and more specifically, to identify hidden relations
between documents and words. The steps of this algorithm are the following: To begin
with, a 2-dimensional matrix is created, where the rows correspond to words in a collection
of documents (a vocabulary) and columns correspond to the documents of this collection.
Each element in the matrix has a frequency value that represents the number of times
this word exists in each document. This representation of documents (as vectors of word
frequencies) is called Bag-of-words model (BOW). The assumption where LSA is based
on is that words that are semantically related, tend to co-occur in similar pieces of text.
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Subsequently, a dimension reducing linear projection, the Singular Value decomposition
(SVD) technique, is applied to lower the dimension of rows or columns, by preserving
the other dimension. It is supposed that similarity between documents or words is better
estimated in the latent space than the original, as when word or document vectors are
grouped together a hidden concept is implied. Logically, “documents that share frequently
co-occurring terms will have a similar representation in the latent space even if they have
no terms in common” as explicitly mentioned in the publication. In other words, LSA
manages to reduce the noise in a text and detect words that refer to the same topic.

Figure 2.3: Singular Value Decomposition technique used in LSI for dimensionality reduc-
tion.

Although this technique was successful in domains such as indexing ((Deerwester et al.,
1990)) it faced problems due to its unstable statistical background. As a result, it was
later improved to Probabilistic Latent Semantic Indexing (pLSI) or Probabilistic Latent
Semantic Analysis (pLSA), by Hofmann (1999). It’s basic idea is that a document can
be viewed as a mixture model, where the mixture components are multinomial random
variables and can be interpreted as topics. Hence, each word can be drawn from a topic
and different words in a document can be generated from different topics. It is gener-
ally a method that may be observed by two different perspectives. Firstly, as a Latent
Variable Model, whose structure is based on a statistical model, called the aspect model.
The hidden variables of this model correspond to topics or concepts and are associated
with the observed variables that represent the documents and words in a text collection.
Each document is represented as a probabilistic mixture of multinomial variables and
consequently expressed as a distribution over topics. Secondly, as a Matrix factorization
technique. Similarly to LSA, it aims to reduce the dimensionality of the co-occurrence
matrix between words (rows) and documents (columns), called the document-term ma-
trix. However, pLSA is based on a more solid statistical and probabilistic interpretation
than LSA, that only uses a mathematical formula. In figure 2.4 the structure of the
aspect-model of pLSA is shown. In summary, pLSA is a generative process for documents

Figure 2.4: The structure of pLSA model.
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that firstly selects a document (from the collection), with a certain probability, and for
each word in this document it selects 1) a topic from a multinomial distribution given the
document and 2) a word from a multinomial distribution given the topic. The model’s
parameters can be estimated by finding the values that maximize the predictive probabil-
ity for the observed word occurrences via the Expectation-Maximization (EM) algorithm.
On the other hand, if the second perspective is preferred, in order to reduce the size of the
co-occurrence document-term matrix (NxM), a decomposition technique is applied into
three different matrices: U matrix with word vectors, D diagonal matrix with singular
values and V document vectors.

However, pLSA provides no probabilistic model at the document level. This means
that no generative process takes place in order to extract the mixture proportions that
constitute the document (e.g. a document is 50% about animals, 30% about food, 20%
about cars). As a result, it suffers from 2 major problems: a) the number of parameters
grows linearly with the corpus size, leading to overfitting problems and b) there is no
indication on how to assign a probability to new-unseen documents.

For this reason, the most well known technique for Topic Modeling was introduced
by Blei et al. (2003), the Latent Dirichlet Allocation (LDA). LDA tries to overcome the
problems of pLSA by transforming the models variables into hidden random variables. In
this way, these variables are not linked with the trained set and consequently not restricted.
Additionally, there is a change in the distributions that are now Dirichlet. Therefore, LDA
achieves better generalization and avoids overfitting. For a more detailed review of LDA
see Chapter 3.

An extension of LDA came four years later again by Blei and Lafferty (2007), the
Correlated Topic Model (CTM) and Pachinko Allocation machine (Li and McCallum
(2006)). This model aims to improve LDA which does not model the correlation of the
occurrence between topics. Although LDA assumes that topics are specified before the
generation of documents, and there is no correlation between them, the intuition behind
CTM is that one latent topic may be correlated with the presence of another. As an
example, a topic about “vacations” is more likely to be also about “restaurants” than about
“genetics”. An important difference between CTM and LDA is that topic proportions are
drawn from a logistic normal prior and not a Dirichlet. As the Dirichlet is a distribution
that assumes that components are nearly independent, the logistic normal can model the
dependence between components. Under this score, the CTM is able to capture all possible
topics that are not independent and as a result it supports more topics.

Figure 2.5: Graphical model representation of the CTM (from Blei and Lafferty (2007)).

Other extensions of LDA have been provided through the years. In tasks where the
order of words matter in a document (such as language generation) the assumption of
negligible word order is not appropriate. A possible solution was introduced by Griffiths
et al. (2004) as a model that switches between LDA and a standard Hidden Markov Model
(HMM). Although the parameter space is larger, the language modeling performance
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improves. Additionally, when long-running collections need to be analyzed, where topics
change over time, a dynamic topic model was introduced by Blei and Lafferty (2006).
The topic is now a sequence of distributions over words, and it is easy to track how it
changes over time. For the case where the number of topics needs to be discovered (not
assumed known and fixed from the start as in simple LDA), a Bayesian non-parametric
topic model was formed by Teh et al. (2006), the Hierarchical Dirichlet Process (HDP). In
this model, the number of topics is determined by the data during posterior inference and
new documents can exhibit previously unseen topics. In order to relax the assumption
that every word is likely in any topic, a spherical topic model allows words to be unlikely
in a topic (Reisinger and Mooney (2010)).

In many text settings that additional meta-data need to be included, other techniques
have been introduced. In order for each word in a document to influence the probability
that the word appears in the document, “bursty” topic models have been developed by
Doyle and Elkan (2009). Sparse topic models that enforce the structure in the topic
distributions (Wang and Blei (2009)), Relational Topic models (Chang and Blei (2010))
assume that each document is modeled as in LDA and that the links between documents
depend on the distance between their proportions and finally, Author-topic models (Rosen-
Zvi et al. (2004)) allow inference about authors as well as documents.

2.4 Sentiment Analysis using Topic Models

The previously mentioned approaches for sentiment analysis in sentence level, espe-
cially those that use affective lexica, do not include information about the context where
the words of a sentence appear. In order to overcome this problem research was focused
on how topics and topic models can be used to help estimate the expressed sentiment of
a sentence by combining the two.

In the work of Eguchi and Lavrenko (2006) sentiment and topic are detected through
user queries. They combine sentiment relevance models and topic relevance models with
model parameters estimated from training data, considering the topic dependence of the
sentiment.

The most well-known approach that was able to detect not only topics but also senti-
ments in reviews and was introduced by Mei et al. (2007). In their approach they try to
identify the topics in an article, associate each topic with sentiment polarities, and model
each topic with its corresponding sentiments by using a topic-sentiment-mixture model.
They are based on the assumption that a document can contain different topics and each
topic consists of different sentiments using multinomial distributions. In more detail, it
divides the words in the document into two major classes: common English words and
topic words, while the former can be positive, neutral or negative. By building on this
generative process the algorithm is able to 1) learn general sentiment models (one for
positive and one for negative opinions), 2) Extract topic models and sentiment coverages,
3) model the topic life cycle and sentiment dynamics.

In the work of Lin and He (2009) a joint model of sentiment and topics (JST) is
proposed. In this model there are distinct topic and sentiment labels. With the help of
Dirichlet distributions, two additional latent variables are integrated and the generative
process is as follows: for each document choose a distribution with parameter ‘γ’, for each
sentiment label choose a distribution with parameter ‘α’, for each word in the document,
choose a sentiment label, a topic and a word from the distribution over words defined by
the topic and the sentiment label. This model is completely unsupervised and does not
require labeled data.
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Another model proposed by Jo and Oh (2011) is an aspect-sentiment unification model.
It analyzes the problem of how sentiments for different aspects are expressed. Firstly
a Sentence-LDA probabilistic generative model is introduced that assumes all words in
a single sentence are generated from one aspect. Then an extension of this model is
performed, the Aspect-Sentiment unification model (ASUM) which incorporates aspect
and sentiment together to model sentiments towards different aspects. It is similar to the
JST model, but it constrains words to come from the same language model.

Rao et al. (2014), propose two sentiment topic models to associate latent topics with
evoked emotions of readers. The first model which is an extension of the existing Super-
vised Topic Model, generates a set of topics from words, followed by sampling emotions
from each topic. The second model generates topics from social emotions directly.

Finally, Xiang et al. (2014) is the most similar paper to this work, as they also use a
mixture model. The main differences are 1) that in our work, a similarity mixture model is
used (not an affective one) and then the sentiment is predicted, using an existing affective
lexicon, 2) The clustering is based on LDA and not on K-means and 3) we trained different
semantic models and not SVMs which implies that our approach is unsupervised, until
the use of the lexicon.



Chapter 3

Latent Dirichlet Allocation (LDA)

3.1 Theoretical Explanation

As the main goal of this Thesis is not to explore in depth how LDA works, but basically
understand they way it works for our task, we will describe it’s intuition and cognitive
motivation firstly 1.

LDA is an algorithm proposed by Blei et al. (2003) that can extract hidden topics in
large collections of text. Let’s consider the following example.

Example 3.1. Assume the we have the following sentences:
1. “I like to eat fish and vegetables”
2. “Cats eat fish”
3. “Fish are pets”

LDA is able to classify the words in these sentence to topics. One can notice that the green
words talk about ‘food’ and the blue words are about ‘pets’.

So, overall these sentences contain the following topics:
Sentence 1: 100% food
Sentence 2: 66.7% pets, 33.3% food
Sentence 3: 100% pets

And each topic can contain the following words:
Topic ‘food’: 40% eat, 40% fish, 20% vegetables
Topic ‘pets’: 80% fish, 20% cats

Now in a theoretical way, we can describe how this process works. Let’s imagine that
we have a big collection of documents and we want to identify the different topics, themes
or concepts that it contains. Assume that each document discusses multiple topics (like
‘sentence 2’ in the previous example) and that each topic contains words with certain
probabilities, according to their appearance in the topic (larger probability indicates more
frequent/common word in the topic). In the previous example, topic 1 talks about pets
and so the word ‘fish’ will be very common in all the documents that contain this topic and
consequently this topic will produce the word ‘fish’ with a large probability. Additionally,
the same words can belong to more than one topic (‘fish’ again according to the example,
belongs to both topics).

1https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/
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Figure 3.1: Example of Topics produced by LDA from Steyvers and Griffiths (2007).

Of course it is impossible to know from the beginning which are these topics, in the
case of thousands of documents. The goal of LDA is to backtrack the procedure of writing
a document and find the topics that generated this document. For example, consider figure
3.1. If one gives equal probability to the first two topics, they would create document the
talks about a person whose color perception was influenced by the large consumption of
drugs. The assumption is that the author has already pre-decided the topics he is going to
write about. However, the unknown factors are too many to extract these topics directly.
In order to overcome this problem, we assume that we know which topic produces all the
words except from a random word w in document d. The only thing that is left to answer
is, how can we decide to which topic this word belongs.

In order to answer this question, we can consider a) the frequency of this word in a
topic T (words can occur frequently in more than one topic) and b) how common is this
topic T to the document. For example, if the word ‘bank’ is very common in documents
that talk about ‘money’ (topic T ), there is a chance that ‘bank’ belongs to the ‘money
topic’. However, ‘bank’ can also occur frequently in a topic about ‘water’. So it is very
important to select the ‘money topic’ if the document we took the word ‘bank’ from talks
more about ‘money’ than ‘water’.

Summing all these considerations together, a logical approach is the following: For
each possible topic T , multiply the frequency of this word w in T by the number of words
in document d that already belong to T (without considering word w). Finally, divide
by the total number of words in document d in order to obtain a probability. The result
will represent the probability that this word came from T . The mathematical formula is
described below:

P (T,w|d) =
freq of word w in T + βw

total tokens in T + β
· {# of words in d that belong to T + α} (3.1)

In order to make this formula more understandable, in fact, the second term in the product,
{# of words in d that belong to T} describes the proportion of topic T in document d
(e.g. document d is about topic T 20%). This way, both the strength of topic T in the
document d and of word w in topic T are considered. The parameters βw, β and α are
called hyperparameters and ensure that there is some chance that the word w belongs to
topic T even if there is no connection between them. This means that there will be no
zero probabilities, only a very small one in such a case.

In the end, we need to make this process generative. Using the formula 3.1 we need
some initial variables. This step is done randomly by simply guessing where each word
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belongs. Then, go through all documents of the collection, word by word and reassign to
each word a new probability for each topic. During this procedure, we will notice that
words that were common in topics will be grouped together, as well as topics that were
common in documents. As a result, topics of specific words (most probable ones) will be
formed and become more and more consistent.

3.2 Statistical Explanation

Apart from the the simple-theoretical approach described in the previous section, a
more formal one is needed. LDA is method that can create documents, given specific
topics and unstructured text. Choosing the example proposed in Blei (2012) (figure 3.2),
an article with title “Seeking Life’s Bare (Genetic) Necessities” is about using data analysis
to determine the number of genes an organism needs to survive. By looking this article
closely, one can identify words about ‘data analysis’, ‘evolutionary biology’, ‘genetics’.
As it is observed this document contains multiple topics in different proportions and
the fact the it talks about these topics could help us classify it in bigger collections.
LDA tries to capture this intuition and generate documents. In statistical language, each
document is represented as a distribution over topics and each topic as a distribution over
words. Naturally, the topic about ‘genetics’ contains words related to genetics with a high
probability as well as the topic about ‘evolutionary biology’ contains related words with
high probability. One basic assumption is made: The number of topics is decided before
the data has been generated. Or in other words, that the author of the collection has
decided which the topics will be before he started writing. Additionally, all documents in
the collection share all topics but they exhibit them in different proportions.

By parsing all documents in the collection, the word generation is achieved in 2 stages.
For each document:

• Randomly choose a distribution over topics

For each word in the document:

• Randomly choose a topic from the distribution over topics

• Randomly choose a word from the corresponding distribution over the vocabulary

The goal of LDA is to discover these topics in a collection in an automated way.
The observations in the model are the documents, while the topics and more specifically
their distributions (document-topic and topic-word) are hidden variables. Consequently,
the problem we need to solve is how to predict the hidden distribution based on the
observations. Or in a more abstract manner “What is the hidden structure that likely
generated the observed collection?”. This is a classic problem of inference.

In probabilistic topic models the data are treated as they originated from a generative
process that include hidden variables. This process defines a joint probability distribution
over both the observed and the hidden random variables. This probability distribution is
used to infer the latent variables and create a conditional (or posterior) distribution. Thus,
the inference problem is a computational problem of finding this conditional distribution
of the topics.

3.2.1 Notation and Terminology

Here we define basic terminology in order to explain the steps of the algorithm.
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Figure 3.2: Explanation of the intuition behind LDA, be Blei (2012).

• One word is defined as a unigram from a certain vocabulary of size V

• A word is represented as a vector of zero elements, with 1 only to the position of
this given word (e.g. w3 =

[
0 0 1 0 0 ... 0

]
)

• We define a document as a group of N words d = {w1, w2, ..., wN}

• We define a corpus as a collection of M documents C = {d1, d2, ..., dM}

• A topic βk is a distribution over the vocabulary

• θd is defined as the distribution of topics for document d and θk,d is the topic pro-
portion of topic βk in document d

• zd is the topic-word distribution for document d and zd,n is the topic assignment for
word wn in document d

3.2.2 Algorithm

In order to formally describe the algorithm, the generative process that LDA is based
on is the following procedure:
For each document d in a corpus C,

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words in the document:
(a) Choose a topic zi ∼ Multinomial(θ)
(b) Choose a word wn from p(wn|zn, β), a Multinomial probability conditioned on
the topic zn
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The joint distribution of the hidden and observed variables is described below:

p(t1:T , θ1:D, z1:D, w1:D) =
K∏
i=1

p(ti)
D∏
d=1

p(θd)
( N∏
n=1

p(zd,n|θd)p(wd,n|t1:K , zd,n)
)

(3.2)

Figure 3.3: Plate notation of LDA.

According to the equation above, multiple dependencies are observed. The zd,n depends
on the document-topic distribution θd, the word wd,n depends on the topic assignment zd,n
and all the topics β. These dependencies are better illustrated in figure 3.3.

Distribution Probability Mass Function (PMF)

Dirichlet 1
B(α)

∏M
i=1 x

(αi−1)
i , B(α) =

∏M
i=1 Γ(αi)

Γ(
∑M

i=1 αi)

Poisson exp−λ
∑M

i=0
λi

i!

Multinomial
Γ(

∑
i xi+1)∏

i Γ(xi+1)

∏M
i=1 p

xi
i

Table 3.1: Distributions used in LDA table.

3.2.3 Inference Methods

In order to compute the posterior distribution of the topic structure the Bayes Theorem
is used:

p(β1:K , θ1:D, z1:D|w1:D) =
p(β1:K , θ1:D, z1:D, w1:D)

p(w1:D)
(3.3)

The numerator is the joint distribution of all random variables and the denominator is
the marginal probability of the observations, which is the probability of seeing the observed
collection of documents under any topic structure. However, the possible number of topic
structures is exponentially large thus making it difficult to infer the words related to a
given topic and the topics being discussed in a given document.
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Topic modeling algorithms try to find ways to estimate the desired posterior proba-
bility, they so-called approximate inference methods (figure 3.4). They generally fall into
two categories: 1) sampling-based algorithms and 2) variational algorithms.

Figure 3.4: Generative process along with the problem of inference (source: Steyvers and
Griffiths (2007))

Sampling-based algorithms attempt to collect samples from the posterior in order
to construct an approximation as an empirical distribution. The most commonly used
sampling algorithm for topic modeling is Gibbs sampling. It is a Markov Chain Monte
Carlo (MCMC) algorithm that helps obtain a sequence of variables from a probability
distribution when direct sampling is difficult. It’s main characteristic is the it uses random
numbers and is an alternative to the deterministic method of Expectation-Maximization
(EM). In Gibbs sampling, a Markov chain is constructed (a sequence of random variables,
dependent on the previous) whose limiting distribution is the posterior. If we run this
algorithm for enough time we will collect many samples and it will be able to construct a
probability approximation.

Variational methods on the other hand, rather than approximating the posterior with
samples, assume that a family of distributions exists over the hidden structure (lower-
bounds on the log likelihood) and find which member is closer to the desired posterior.
Thus, the inference problem is now an optimization problem. In order to obtain these
families, one can simplify the plate-notation model of figure 3.3 by removing edges between
θ, z and w. If the w nodes are removed as well, the resulting model will have free
variational parameters. The optimal values are found by minimizing the Kullback-Leibler
(KL) divergence.
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Semantic and Affective Models

4.1 Distributional Semantic Models

The ideas of formal semantics, also discussed in Chapter 2, include the representation
of phrases, sentences and words in terms of set-theoretic models. The main intuition
behind semantics is that the world consists of objects with properties and relations exist
between them. Models that capture this intuition have been developed and proved to be
useful for computational semantics. There is a tendency to use vector spaces in order to
represent the meaning of sentences, as they provide a natural mechanism for calculating
similarity and distance. In this way the step of comparing words and larger lexical units
becomes very efficient.

4.1.1 Definition

Models like the ones mentioned before, are considered a kind of knowledge models.
These models, that have been developed for decades, are also known as vector spaces,
semantic spaces or word spaces. As mentioned in Baroni and Lenci (2010) Distributional
Semantic Models (DSMs) rely on some version of the distributional hypothesis (Harris
(1954), Miller and Charles (1991), Turney et al. (2010)): “Words that occur in similar
contexts tend to have similar meanings”. In other words, “the degree of semantic similarity
between two words can be modeled as a function of the degree of overlap among their
linguistic contexts”. Vector space models (VSMs) represent (embed) words in a continuous
vector space where semantically similar words are mapped to nearby points (‘are embedded
nearby each other’).

Usually, the bag-of-words (BOW) format is used for vector representation. This means
that the order of the words in a document does not matter, only their occurrence frequency.
Obviously, this is a vague assumption since the meaning of a word is strongly connected
with the order of the words surrounding it. However, this simple approach seems to have
good results as it generally captures the context of the word. At the end of the vectors
construction we will be able to compare these vectors, using a distance metric, cosine or
euclidean for example, and estimate their similarity.

Distributional semantic models differ primarily with respect to the following parame-
ters:

• Context type (text regions vs. linguistic items)

• Context window (size, extension, etc.)

43
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• Frequency weighting (e.g. entropy, point-wise mutual information, etc.)

• Dimension reduction (e.g. random indexing, singular value decomposition, etc.)

• Similarity measure (e.g. cosine similarity, Jaccard, etc.)

4.1.2 Functionality

In general, in order to construct these vectors, a) a corpus and b) a vocabulary are
needed. If the vocabulary is not provided one can be extracted from the existing corpus.
As a first step, one could think to represent each word as a vector with the frequencies
of co-occurrence with all the words in the vocabulary. This means that if the vocabulary
contains 1000 words, each word will be represented as a 1000D vector. Each element of
this vector will contain the frequency of co-occurrence of these 2 words (word of interest
(row) and element-word (column)) in the whole corpus. However, this is a very broad
notion of word similarity (these vectors would seem to be produced randomly), and for
this reason we have to narrow down this search in order to find a topical similarity. To
achieve that, we consider only the co-occurrence with a few words either side of the target
word, also known as a ‘window’.

Figure 4.1: Example of term-term BOW matrix, using term co-occurrence frequency and
window = 1. Image from Clark (2012).

Figure 4.1 show an example of this construction from a toy corpus using a window of
size 1 (only consider 1 word from the left and 1 from the right of the target word). The
rows represent the target words and the columns are the vocabulary words that are used as
context-features. It is not obligatory for the target words to be included in the vocabulary,
only to exist in the corpus. As a next step, the similarity between these vectors can be
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calculated using the cosine angle between them.

sim(−→v1 ,
−→v2) =

−→v1 · −→v2

‖−→v1‖ · ‖−→v2‖
(4.1)

As a result, for the example above, we obtain:
sim(automobile, car) = 4/

√
21 = 0.87

sim(automobile, soccer) = 0/
√

12 = 0
sim(automobile, football) = 1/

√
24 = 0.2

sim(car, soccer) = 1/
√

28 = 0.19
sim(car, football) = 2/

√
56 = 0.27

sim(soccer, football) = 5/
√

32 = 0.88

The term-term co-occurrence frequency matrix can be constructed with different val-
ues, such as Point-wise Mutual Information (PMI) scores (pmi(x, y) = log p(x,y)

p(x)p(y)), TF-

IDF scores, binary (1-0) for presence or not of the feature word in the context etc. Reduc-
tion techniques can also be applied in case the vocabulary size is too large. One disadvan-
tage of the SVD technique (the most common one) is that the induced hidden dimensions
are difficult to interpret, whereas basis vectors, can be related to conceptual properties and
given psycho linguistic interpretation as mention in Baroni and Lenci (2010). Also, except
from the cosine similarity, multiple types of other similarity metrics can be used, such as
the Pearson coefficient, Jaccard coefficient, Tanimoto coefficient and the Euclidean. These
coefficients are summarized in the following table.

Similarity Type Formula

Cosine cos(θ) =
−→v1·−→v2
‖−→v1‖·‖−→v2‖

Euclidean d(v1, v2) =
√∑N

i=1 (v1i − v2i)2

Pearson ρv1,v2 = cov(v1,v2)
σv1σv2

Jaccard J = M11
M01+M10+M11

Tanimoto T (−→v1 ,
−→v2) =

−→v1·−→v2
‖−→v1‖2+‖−→v2‖2−−→v1·−→v2

Table 4.1: List of similarity metrics for word-vectors comparison.

Vector space models, can be divided into two categories, a) count-based and b) predic-
tive methods. As stated in Baroni and Lenci (2010), count-based methods compute the
statistics of how often some word co-occurs with its neighbor words in a large text corpus,
and then map these count-statistics down to a small, dense vector for each word. Predic-
tive models directly try to predict a word from its neighbors in terms of learning small,
dense embedding vectors (considered parameters of the model). Previously, we described
the first category and we continue with the most well known model from the second one.



46 Chapter 4. Semantic and Affective Models

4.1.3 Word2Vec

Word2vec is a particularly computationally-efficient predictive model for learning high-
quality word embeddings from raw text and is the one we used in this thesis. It was
introduced by Mikolov et al. (2013) and in their paper they show how neural network based
language models significantly outperform N-gram models. The former, can also be trained
on larger amounts of data and millions of words in the vocabulary. As they additionally
mention, it was found that similarity of word representations goes beyond simple syntactic
regularities. Using a word offset technique where simple algebraic operations are performed
on the word vectors, it was shown for example that vector(“King”) − vector(“Man”) +
vector(“Woman”) results in a vector that is closest to the vector representation of the
word “Queen”.

The general structure is based on the probabilistic feedforward neural network language
model, which has been proposed in Bengio et al. (2006). It consists of input, projection,
hidden and output layers. At the input layer, N previous words are encoded in a one-hot
coding, where V is the size of the vocabulary. This means that each word is represented as a
vector of zeros with one only in the position of this word. The input layer is then projected
to a projection layer P that has a dimentionality NxD, using a shared projection matrix.
In Word2Vec hierarchical softmax can also be used, where the vocabulary is represented
as a Huffman binary tree. There are 2 possible architectures, the Skip-gram Model and
the Continuous Bag-of-Words (CBOW). The parameters of Word2Vec are explained in
detail in Rong (2014).

Figure 4.2: CBOW and Skipgram architectures of Word2Vec.

Skip-Gram

The skipgram model tries to predict the context of a target word, given this word.
In fact, it learns two separate embeddings for each word w, the word embedding and
the context embedding. They are encoded in two matrices, the word matrix W and the
context matrix C. The rows of the first are the word vectors with dimension d (1×d)
(for a word in the vocabulary) and the columns of the second are the context vectors
(d×1). The skipgram model, predicts each neighboring word in a context window L,
win = [wt−2, wt−1, wt+1, wt+2]. In the end, we want to compute P (wk|wj) (wj is the
target, wk is the context). The procedure is the following:
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1. The input vector x is a one-hot for the target word wj

2. Predict the probability for each for the 2L words in win

(a) Select the vector from W and multiply it with x to produce the projection
matrix. The projection layer will be the embedding for wj (vj)

(b) Compute the dot product vj · ck which gives the output scores for each vocab-
ulary word

(c) Normalize the dot products into probabilities using a soft-max function

CBOW

CBOW is a mirror image of skipgram, as it predicts the target word given the context
words. The main difference is in the computation of the projection layer. Again there
are 2 d-dimensional embeddings, for the words and the contexts that form the matrices
W and C (transposed compared to skipgram ones). Now we want to predict P (wk, wj)
(wk is the target, wj is the context). The input layer is connected to the projection layer
by a C = |V |xd context matrix. This matrix is repeated between each one-hot input
vector and the projection layer. The multiplication of vector x and matrix C will give 2
context vectors, of which we take the average and form the projection layer. Afterwards,
the projection layer is multiplied with the word matrix W resulting the V scores for each
word in the vocabulary. Finally, these scores are transformed into a probability using a
soft-max layer.

4.2 Affective Model

The model proposed by Malandrakis et al. (2011a) uses an existing affective lexicon
that defines the semantic orientation of words (unigrams) in continuous affective scores.
The main assumption of this model is that “Semantic similarity can be translated to
affective similarity” and thus a mapping from the semantic to the affective space is built.
As a result, given the semantic similarity between two words, the affective rating of the
one given the other can be determined. The idea was based on the work of Turney and
Littman (2002) that used a set of words with known affective ratings, known as seed words.
Then the semantic similarity of a seed word and a new word is computed with the help
a distributional semantic model and used to estimate the affective score of the new word.
The initial seed words can be labels of affective categories (“anger”, “happiness”), words
with continuous scores etc. The final step is to combine the scores of the seed words in
order to extract the score of the unseen word.

4.2.1 From Semantic to Affective Space

Generally, semantic models can be seen as a cognitive process of analyzing the human
behavior when it comes to language understanding. Therefore, appears a need for a
model that can capture sentiment. The Semantic-Affective Model (SAM)(Malandrakis
et al. (2011a),Turney and Littman (2002)) aims to bridge the gap between the semantic
and the affective space, as well as to transfer the knowledge from one domain to the other.
The assumption on which it is based can be summed up in the phrase “Semantic similarity
implies affective similarity”. The concept is presented in figure 4.3.

The model assumes the existence of two spaces a) a semantic space, where all words
are somehow connected to each other by their semantic meaning and b) an affective space,
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Figure 4.3: Semantic-Affective model as proposed in Malandrakis et al. (2014).

where words are represented by their affective meaning as points in 3 dimensional space
of valence, arousal and dominance (described in 1). A large generic corpus is used to
built the semantic model from which similarities between pairs of words will be extracted
and used in the SAM. The goal is to find the appropriate mapping, in order to estimate
affective scores for unseen words using both spaces. This procedure is outlined in figure
4.4.

Figure 4.4: Semantic-Affective Mapping concept.

4.2.2 Word-level tagging

In order to estimate the score of a word, the model uses an existing annotated lexicon
from where only a dataset is actually used (seed words). The affective scores usually are in
the valence dimension in a range of [−1, 1] (from very positive to very negative), from the
reader perspective. Additionally, the semantic model built using a corpus is used to extract
word-pairs similarity scores. Finally, the semantic-affective mapping is calculated using
both the lexicon and the similarity scores in a training process. The ratings of the new
word, are estimated as the linear combination of the ratings of seed words. The following
equation summarizes the above:

v(wj) = α0 +

N∑
n=1

αi · v(wi) · d(wi, wj) (4.2)

where wj is the word we mean to characterize, w1, ..., wN are the seed words, v(wi)
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is the valence rating for seed word wi, αi is the weight corresponding to word wi and
d(wi, wj) is a measure of semantic similarity between words wi and wj .

The weights αi are basically the semantic-affective mapping we described before and
can be learned by solving a linear system. If we have a corpus with K annotated words,
and choose N of them as seeds (N < K), we can estimate the weights αi of the model.
We can use equation 4.2 to create K linear equations with N + 1 unknown variables.
These α parameters can obtain their optimal value using Least Mean Squares (LMS) or
a regularized version known as Ridge Regression (RR). The LSE method is described in
equation 4.3.

X · α = y, where α̂lse = argminαlse
||y −Xαlse||2 (4.3)

On the other hand, for the RR method, an additional parameter λ is introduced that
works as a regularization factor which used tries to best fit a curve into the data (lexicon
affective scores) as shown in equation 4.4.

α̂rr = argminαrr

(
||y −Xαrr||2 + λ||αrr||

)
(4.4)

X is a matrix containing all similarity pairs between the seed words and the whole
affective lexicon of sizeK×(N+1), α is the coefficients (mapping) vector of size ((N+1)×1)
and y is the vector with the affective scores for the whole lexicon of size (K + 1)× 1.

1 d(w1, w1)v(w1) · · · d(w1, wN )v(wN )
...

...
...

...
1 d(wK , w1)v(w1) · · · d(wK , wN )v(wN )

 ·

α0

α1
...
αN

 =


1

v(w1)
...

v(wK)

 (4.5)

where α1, ..., αN are the N seed word weights and α0 is an additional parameter that
works as an affective bias in the seed word set.

The main motivation behind the idea of training these parameters, is the fact that
semantic similarity does not fully capture the relevance of a seed word for valence com-
putation, as mentioned in Malandrakis et al. (2011a). Illustrating an example, assume
that the word ‘love’ is the word we want to estimate the affect for and there are two seed
words, for example ‘apple’, ‘life’ that have the same semantic similarity with ‘love’. Using
the assumption that “semantic similarity implies affective similarity”, both the scores of
these words will be included in the sum with the same weight. However, not both words
should be weighted the same as they may express totally different contexts or are unam-
biguous. This would result a misleading general sentiment for the word of interest. The
LMS machine learning method enables us to capture exactly this intuition.

In order to select the seeds words (N) that will be used to estimate an unknown word,
a feature selection method is performed. In particular, we aim that the subset that is
collected is balanced, which means that the sum of the scores of each individual word
should be close to zero.

The semantic model can be any distributional semantic model (like the ones described
in the previous section and Chapter 2) and the similarity metric that is used in the model
can be any similarity measure between vectors of two words. Additionally, kernels can be
applied to this metric for better performance as proposed in Malandrakis et al. (2011b).

Generally, the affective lexicon that is used for this method is the Affective Norms
for English Words (ANEW) proposed by Bradley and Lang (1999) which contains 1034
English words with valence, arousal and dominance scores between [-1,1]. Additionally,
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Figure 4.5: Unseen word affective score estimation procedure using SAM.

the five basic emotions are also included in this lexicon. An example of how the training
is done is shown below:

Order wi v(wi) αi v(wi)xαi
1 triumphant 0.96 0.34 0.33
2 love 0.93 0.78 0.73
3 paradise 0.93 2.07 1.93
4 loved 0.91 1.72 1.57
5 joy 0.9 2.57 2.31
6 rape -0.94 2.56 -0.09
7 suicide -0.94 2.56 -2.5
8 funeral -0.9 0.09 -0.08
9 cancer -0.88 0.77 -0.68
10 rejected -0.88 0.83 -0.73
- (offset) 1 -0.11 -0.11

Table 4.2: Example of training with 10 seed words from ANEW, using LSE.

In summary, the aforementioned model estimates a new-unseen word using scores
of existing words in different proportions, based on their measure or relatedness and a
trainable weight factor. Generally, it can compute generic affective scores very well, or
adapt them in a specific context by training the coefficient weights with another corpus
(Malandrakis et al. (2011b)).

4.2.3 Sentence-level tagging

Fusion

Moving on to the sentence level, the principle of compositionality (Pelletier (1994))
states that the meaning of a sentence is the sum of the meaning of its parts. So in order
to estimate the affective score of a sentence using the affective scores of its words can be
achieved using three fusion models, as proposed in Malandrakis et al. (2011a).
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1. Linear Fusion

v1(s) =
1

N

N∑
i=1

v(wi) (4.6)

In this fusion scheme, simply the average of a sentences words scores will give the
overall score for this sentence. This equally weights all words and tends to give lower
scores to sentences that contain many neutral words.

2. Weighted Fusion

v2(s) =
1∑N

i=1 |v(wi)|

N∑
i=1

v(wi)
2 · sign(v(wi)) (4.7)

This is a normalized weighted average, in which words with higher affective scores
are weighted more.

3. Non-linear Max Fusion

v3(s) = maxi(|v(wi)|) · sign(v(wz)), where z = argmaxi(|v(wi)|) (4.8)

Finally, a non-linear fusion that characterizes the sentence with the same score as
the highest word in the sentence.

Classification

Additionally, in order to predict the affective score for a sentence the state-of-the art
method includes the use of a classifier. More specifically, if the affective scores for each
word in a sentence are obtained, some statistics are extracted and work as features. In
this way, each sentence is represented as a feature vector, with values the statistics from
its words scores.

The main difference between this approach and the fusion is that the first requires
training data in order to train the classifier, while the latter is completely unsupervised
as far as the evaluation is concerned.

The statistics that can be used, as proposed in Malandrakis et al. (2011b) are:

• length (cardinality)

• max

• min

• mean

• variance

• standard deviation

• range (max - min)

• amplitude

• sum

Normalized version of these features can be created, according to Part-of-Speech Tag-
ging (POS Tagging). For example, feature max over all nouns divided by the max over
all tokens. If we consider nouns, adverbs, adjectives and verbs as POS tags of interest,
we end up with 27 features, which means a 27D feature vector for each sentence. In a
more simple case, we can extract simple features and normalized them by the length of
the sentence, leading to a 18D vector.

A classifier can be then trained using some labeled sentences and used to predict the
affective scores of new sentences. Naive Bayes Tree, Random Forest, SVM are the most
common cases. The classification is usually binary, between positive and negative sentences
but the 3-class problem can be also performed, using the neutral class additionally.





Chapter 5

Sentence-level Adaptation

5.1 Motivation

As simple lexicon based models fail to capture the context where a sentence belongs,
topic modeling methods try to incorporate topic knowledge with a view to lead to a more
specific detection of the expressed sentiment in a sentence. This can be viewed as two-
step classification process, where firstly the sentence is classified to a topic and secondly
in a positive or negative sentiment class. Based on the fact that “semantic similarity
implies affective similarity” the idea is to split a large collection of documents into the
topics it consists of and train multiple semantic models in these specific domains. The
plan is to combine a different subset of these models in a mixture model, for each test
sentence. Actually, the semantic similarities of the words in a domain are recalculated (for
each topic) and then merged to create new semantic similarities, unique for each sentence.
After adapting the semantic space to each topic, we are able to use the Semantic-Affective
Model described in Chapter 4 to connect the semantic and the affective space, estimate
the affective scores of a sentence’s words and then estimate the affective score of the whole
sentence.

This idea was motivated by the fact that through this procedure a form of word
disambiguation can be achieved. For example, if a sentence talks about computers it is
likely to contain the word ‘apple’, but this can also be the case if it is about food. After
training a topic model, it will be able to distinguish that a sentence with the word ‘apple’
is about fruit and classify it to the topic that is related to food (as we saw in Chapter 3).
For a new sentence, the topics that is likely to be about will be selected and the similarities
that are needed in equation 4.2 will be obtained from the semantic models of these topics.

In summary, we can use multiple semantic models from the different domains that a
sentence can possibly contain, in order to construct more accurately its semantic space.

5.2 Topic Modeling

5.2.1 Latent Model training

The data required for this task is a large corpus. It can be a generic one (downloaded
from the web (e.g. Wikipedia)) or a collection formed from reviews (e.g. Movie reviews).

We will need two versions of this corpus. One that contains documents (from para-
graphs to larger lexical units) and another the contains sentences. The first corpus will be
used as input to the Latent Dirichlet allocation algorithm as in its default form assumes
that each document contains multiple topics. In the case of sentences this assumption
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cannot stand (how many topics can a single sentence contain?), so documents must be
the input. The sentences corpus will be used in order to construct the topics. The main
intuition behind this idea is that smaller pieces of document (sentences) will possibly talk
about one topic, so the classification can be strict (1 sentence → 1 topic).

So as to create topics, we give as input to the LDA the document corpus. The toolbox
that enabled us to work with large amounts of data is the Gensim Toolbox, created by
Řeh̊uřek and Sojka (2010). More information about this toolbox is included in Appendix
A.

The inputs of LDA are:
- A vocabulary
- A corpus in bag-of-words (BOW) format

We extract a vocabulary from the corpus. If it is too large infrequent terms can be
trimmed. The BOW format is constructed based on this vocabulary, for each document
in the corpus. This means, that each document is represented as a V-dimensional vector
with the frequency of each element (word in the vocabulary) as value.

The outputs of LDA are 2 distributions,
- distribution of document-topics
- distribution of topic-words

The first, includes the topics that each document is likely to contain and their proba-
bility. For example 40% Topic 1 (e.g. food), 30% Topic 5 (e.g. animals) and 30% Topic
9 (e.g. music). The second, includes the words that each topic is likely to contain, by
assigning them a probability. An example is shown in table 5.1 similar to figure 3.1.

Topic 1 Topic 2 Topic 3 Topic 4

space 0.06 recipe 0.07 music 0.06 medical 0.09
astronomy 0.05 recipes 0.07 guitar 0.06 treatment 0.08

moon 0.05 food 0.06 piano 0.05 health 0.07
astrology 0.04 cooking 0.06 classical 0.06 disease 0.07

star 0.04 chicken 0.06 jazz 0.045 cancer 0.06
solar 0.03 chocolate 0.06 sheet 0.04 symptoms 0.06

NASA 0.03 kitchen 0.06 dance 0.03 pain 0.06
earth 0.02 cheese 0.05 free 0.02 causes 0.04
mars 0.02 cake 0.02 opera 0.01 surgery 0.04
news 0.02 home 0.01 band 0.01 answers 0.03

Table 5.1: Example of Topic Modeling output, distribution words in a topic, using the top
10 most probable words.

Using these two distributions, we can then classify each sentence of the large collection
(sentences corpus) into the topics that we chose to generate. The concept is to apply the
trained LDA model to each corpus-sentence, and receive in return the topics that it may
belong as well as their probabilities.

Firstly, the sentence needs to be represented as a bag-of-words (BOW) vector, with
the words of the vocabulary.

An example is shown below:

Example 5.2. Assume that our sentence of interest is:
s = “Test to predict breast cancer relapse is approved.”
After applying a trained LDA model on 60 topics, the result is:
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Topic 1: 0.687, Topic 5: 0.174
This means that this sentence, has 68.7% chance to belong to topic 1 and 17.4% chance
to belong to topic 5. The contents of these topics, in terms of the 10 most probable words
they contain, are:
Topic #1: health, medical, cancer, treatment, disease, symptoms, pain, information,
medicine, causes
Topic #5: drug, health, online, drugs, marijuana, alcohol, effects, smoking, addiction,
sleep

We can notice that both topics talk about health, the first as a general domain and
the second as more specific on drugs. Given the sentence, it seems that LDA correctly
classifies it into these topics, giving more weight to the first one.

5.2.2 Topics Construction

The next step is to collect the appropriate sentences from the corpus collection and
build topic-clusters. We can perform a strict clustering, which means to classify each
sentence only to one topic or to perform soft clustering, which means classifying each
sentence to multiple topics. In the first case, the sentence is classified to the topic that
gives the maximum posterior probability. In the second one, the sentence is classified to
all topics that have a posterior above a threshold.

Figure 5.1: Topic construction diagram.

If a sentence belongs to all the topics with the same probability it is not classified
anywhere as it is considered very ambiguous. Additionally, if LDA fails to return a possible
topics for a sentence this sentence is also not classified anywhere. Figure 5.1 outlines the
topics construction procedure.

After the topic-clusters construction, a separate semantic model is trained for each
topic. For this purpose different DSMs can be trained, but we used the Word2Vec tool as
a state-of-the art model. We tune its parameters (Chapter 6) and estimate the similarities
between words for each topic using the sub-corpora created in the previous step.

5.3 Semantic Model Adaptation (SMA)

For the final step, we need to combine the semantic models trained for each topic so
as to adapt the semantic space of a test-sentence.

5.3.1 Mixture of Models

The procedure can be described through the algorithm below.
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1. Transform a test sentence in BOW format

2. Apply a trained LDA model to this sentence

3. Receive topics along with their posterior probabilities for this sentence

4. For each word in the sentence and a seed word (with known affective score), extract
the similarity between the two from all the Topics that the sentence can be classified

5. Multiply each similarity with the topic-posterior and calculate the average over all
topics

The combination of these models is summarized in the equation below:

sim(wj , seedi) =

∑T
t=1 p(topt|s) · simt(wj , seedi)∑T

t=1 p(topt|s)
(5.1)

where s = {w0, w1, ..., wj , ..., wn}] as a test sentence, wj is a word in the sentence,
seedi is a seed word, with known affective score, p(topt|s) is the topic posterior probability
(probability for sentence s to contain topic t) and simt(wj , seedi) is the similarity obtained
from topic t between the words wj and seedi.

Overall, the model weights each similarity by the topic posterior and in the end pro-
duces a new similarity for a given pair.

Example 5.3. Assume that the sentence of interest is the one in example 5.1 and that
we use as seed words, the ones shown in table 4.2 from Chapter 4. In order to estimate
the new-adapted similarity between the word ‘breast’ (word in the sentence) and ‘cancer’
(seed word) we extract the similarity between these words from topic 1 and topic 5.
sim1(breast, cancer) = 0.32, sim5(breast, cancer) = 0.25
p(t = 1|s) = 0.687, p(t = 1|s) = 0.174
simfinal(breast, cancer) = (0.32 ∗ 0.687 + 0.25 ∗ 0.174)/(0.687 + 0.174) = 0.31

Figure 5.2: Mixture of Semantic models diagram.

In a similar way, we calculate the similarities between all the words of a sentence and
the seed words that we chose.

5.3.2 Sentiment Prediction

Finally, the semantic-affective model 4.2 is used to predict the affective score for each
word in the sentence. The sentence-level score is estimated using either the fusion or the
classification scheme as described in Chapter 4.
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More analytically, the seed selection procedure is used to extract a number of seed
words that will be used to estimate the affective score of a sentence’s words, using the
adapted semantic similarity that was the result of the mixture.

vadapted(wj) = α0 +

N∑
n=1

αi · v(wi) · dadapted(wi, wj) (5.2)

where dadapted(wi, wj) is equal to the sim(wj , seedi) from 5.1.





Chapter 6

Experimental Procedure &
Results

6.1 Datasets Desciption

Corpus

The main corpus that was used for the experiments was a generic, web-harvested corpus
downloaded from the web. In order to create the corpus, firstly a vocabulary was built.
The vocabulary of English packaged in the Aspell spellchecker for English, containing
135433 words was used to pose a query for each word to the Yahoo! search engine and
collect snippets (short representative excerpts of the document shown under the result) of
the top 500 results. Each snippet is usually composed of 2 sentences: title and content.
The final corpus contains approximately 116 million sentences.

This corpus was pre-processed:

1. Tokenized: Split corpus to tokens

2. Numbers, stop-words (words like ‘i’, ‘to’, ‘the’ etc), punctuation removed

3. Duplicate lines removed

The final corpus (after processing) contains unique sentences. In order to create a
corpus of documents, sentences of the corpus were concatenated sequentially in teams of
100. This means that the first 100 collected sentences, would be considered as the first
document, the second 100 sentences would be the second document and so on. Because
the corpus was constructed with multiple queries of words by collecting the first 500 results
for each query, these 100 sentences will probably contain multiple examples of a word’s
different senses and thus can form a document about this query. In the end we have 900
thousand documents.

Words

As far as the words lexica that are used, as the affective human-annotated lexicon we
use the Affective Norms for English words (ANEW) dataset (Bradley and Lang (1999)),
which contains 1034 word scores in continuous dimensions of valence, arousal and domi-
nance in [-1,1]. This dataset was created as part of a psychological experiment were the
subjects (students) were asked to rate how they felt while reading each word.
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Lexicon # words Dimension Scores Range

ANEW 1034
Valence

[-1,1]Arousal
Dominance

Table 6.1: ANEW affective lexicon.

In addition, in order to estimate the similarity between words, they exist a lot of pair-
wise semantic similarity datasets. We use two of the most well-know datasets described
in the table 6.2:

Dataset Reference Number of pairs Scores range

WS-353 Finkelstein et al. (2001) 353 [0,10]
MEN Bruni et al. (2014) 3000 [0,50]

Table 6.2: Word-pairs similarity datasets.

Sentences

In order to estimate the affective scores for sentences, we use two main dataset, a
generic one and a Twitter one. The first is the SemEval 2007 News headlines dataset. It
contains 250 sentences as training data and 1000 sentences as testing data, with continuous
valence scores in [-100,100] (re-scaled in [-1,1] for out experiments). Additionally, the same
dataset is annotated for the six basic emotions (anger, disgust, fear, joy, sadness, surprise)
in a [0,100]. For our experiments we use only the valence scores of the dataset. The
second dataset is from the SemEval 2016 Sentiment Analysis in Twitter task 4, and more
specifically from the Task B: “Tweet classification according to a two-point scale”. It
consisted of 3938 tweets as training set and 10551 tweets as testing set, with binary labels
(1 for positive and -1 for negative).

Dataset # Sentences Dimension Ratings

News Headlines SemEval-2007
250 train Valence [-1,1]
1000 test Emotion [0,100]

Twitter SemEval-2016 Task B
3938 train

Binary -1, 1
10551 test

Table 6.3: Sentences datasets for polarity classification.

6.2 Topics Evaluation

In order to evaluate the topics that we constructed with the help of LDA, an analysis
should take place. The following sections describe the results of each step of the algorithm
before the mixture model.

LDA Training

Using the documents corpus as input we train the LDA model of the Gensim Toolbox
with the following parameters:
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• Number of topics from 10 to 100

• Number of iterations = 200

Firstly, we need to evaluate the quality of the topics that LDA produces. One of the
outputs is the topic-word distribution for each topic. Using the top n = 10 most common
words in each topic, as returned from the LDA t = {w1, w2, ..., w10}, we can measure the
intra-topic coherence as the average similarity between all pairs (45 pairs if we have 10
words from each topic) as proposed by Newman et al. (2010) and average over all topics
t ∈ T (equation 6.1). Word vectors that will help in the calculation of semantic similarity
can be obtained by training word2vec on the whole web-harvested corpus described above
(90M sentences).

CohgroupT =
1

T

T∑
t=1

∑
1≤i≤n
i+1≤j≤nsim(wi,wj)(

n
2

) (6.1)

This measure describes how coherent a topic can be considered, based on the relations
between the words that characterize it. A higher average similarity score will indicate that
the most topics in this group are well defined by LDA, whereas low similarity score will
mean that too general topics were produced. The number of topics that give the highest
average similarity can be considered as the best possible number of topics to extract from
the corpus as the words that represent it are the most closely related compared to other
topics.

Figure 6.1: Intra-topic coherence measured after LDA training.

Observing figure 6.1, we can notice that generally 60 and 90 topics seem to be the most
coherent, as according to the previous theorem, the words that characterize them have
high similarity between them. Although we may expect this number of topics to achieve
the best performance in the following experiments, this is something that depends on the
number of data collected for each topic in the group.

Another metric that can be used is to measure the inter-topic coherence, which means
the actual distance between these topics. Higher distance indicates that the topics are
independent and unique while low distance shows limited power of topics distinction from
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LDA. However, if one topic is a subtopic of another they will be very close and consequently
their distance will be very low. The best way to actually measure the inter-topic coherence
is to visualize these models. In order to to do that, we use the LDAviz toolkit 1 which
is able to detect not only the marginal topic distributions but also the saliency of the
vocabulary in each topic.

For reasons of completeness we can introduce the meaning of saliecy and distinctiveness
(Chuang et al. (2012)). For a given word w, we need to compute its conditional probability
P (T |w), the likelihood that observed word w was generated by latent topic T . We also
compute the marginal probability P (T ) as the total probability of topic T in the collection.
The distinctiveness of a word is defined as:

Distinctiveness(w) =
∑
T

P (T |w)log
P (T |w)

P (T )
= KL(P (T |w)||P (T )) (6.2)

which is the Kullback-Leibler (KL) divergence (Kullback and Leibler (1951)) between, the
topic distribution P (T |w) given the word w, and the marginal topic distribution P (T ), the
likelihood that any random word has been drawn from topic T . The word distinctiveness
measures how informative is a word for the topic compared to a randomly selected word.

Then, we can define the word saliency:

Saliency(w) = P (w) ·Distinctiveness(w) (6.3)

of a word w by weighting its frequency by its distinctiveness. Compared to the ranking
by frequency P (w), the ranking by saliency will penalize the words shared across several
topics, as they will have a low distinctiveness, and boost words that are good predictors
of one topic, as they will have a high distinctiveness.

An example for a possible classification is shown in figures 6.2, 6.3, along with a
hyperlink for an interactive visual.

Topic-based corpora evaluation

The next step, is to construct each topic by classifying sentences from the corpus to
different topic clusters. The topics can be classified using a posterior threshold or to be
classified to only one topic, the topic with the maximum posterior probability. This means
that a sentence is classified to more than one topics if the probability to belong in this
topic is > thres or it is classified only to the most probable topic. The number of sentences
collected with each method per topic are shown in table 6.4 using a posterior threshold of
0.1.

As we can observe the number of sentences collected with the maximum probability
is very low, especially for large number of topics. The size of the topics is an important
factor for the training of the topic-DSMs. For this reason, for the following experiments we
use the posterior threshold of 0.1, which enables us to perform a smooth clustering as we
are able to collect approximately twice the number of sentences when using the maximum
posterior.

Based on the assumption that if a sentence is classified to all topics with the same
probability is too ambiguous to be classified in a topic, there will be sentences that will
not be classified anywhere. As we can observe from table 6.5, the number of “junk”
sentences remains almost intact through all numbers of topics, showing that they are

1https://cran.r-project.org/web/packages/LDAvis/index.html

https://cran.r-project.org/web/packages/LDAvis/index.html
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Figure 6.2: Example of visualization for 60 topics (60 Topics Example Link).

Figure 6.3: Example of visualization for 90 topics (90 Topics Example Link).

possibly some standard noise sentences, collected during the corpus construction process
that need to be ignored.

https://nbviewer.jupyter.org/gist/fenchri/c1937a9720b8e1d4acf8
https://nbviewer.jupyter.org/gist/fenchri/fa146205b5667e91a30d7e9e3af14d21
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0.1 Posterior Max Posterior

Topics Min Max Mean Min Max Mean

10 10.8 M 20.7 M 14.6 M 5.2 M 12.9 M 8.9 M
20 4.9 M 15 M 7.7 M 2.3 M 10.1 M 4.4 M
30 2.4 M 11.9 M 5.4 M 830 K 7.4 M 2.9 M
40 2.3 M 8.4 M 4.3 M 692 K 5 M 2.2 M
50 1.2 M 7.7 M 3.6 M 338 K 4.8 M 1.7 M
60 1.2 M 9.4 M 3.1 M 292 K 5.2 M 1.4 M
70 604 K 5.3 M 2.7 M 99 K 3.3 M 1.2 M
80 297 K 6.2 M 2.4 M 44 K 3.4 M 1.1 M
90 412 K 6.4 M 2.2 M 56 K 3.6 M 987 K
100 277 K 7.4 M 2 M 42 K 4.6 M 888 K

Table 6.4: Statistics for number of sentences collected per topic using a posterior proba-
bility threshold = 0.1 and the max posterior probability.

Topics # sentences

10 828360
20 828360
30 828360
40 828362
50 828361
60 828370
70 828382
80 828382
90 828416
100 828430

Table 6.5: Number of sentences not classified.

It is useful now to observe how many sentences are classified to one, two, three or T
topics. Figure 6.4 shows different bar plots with the number of topics that a sentence can
be classified along with these sentences count.

As far as the number of topics a sentence can be classified is concerned, only for 10
and approximately 20 topics most sentences can be classified to only one topic, (they give
a very high posterior probability for this topic). Generally, this is the desired behavior,
as it means that LDA is able to detect with great certainty the specific topic a sentence
can belong. As the number of topics increases, it is logical that topics become more and
more specific. In the end most sentences belong to two topics, while in the worst case a
small amount can belong up to eight topics (for 100 topics). An explanation is that when
a topic becomes more specific, subcategories of it are created. For example, when using
only 20T it is possible to have a topic about health. When the topics become 60, there
will be three topics about health, one about drugs, another about dental care and one
about skin care. In this case, if the sentence is a general one that talks about cancer, LDA
will classify it into all three topics with a posterior weight that is likely to be above 0.1 for
all, and this is the reason that figure 6.4 illustrates the two topics as the number of topics
most sentences are classified. On the other hand, if a sentence does not contain any of the
topics that LDA generated is will be very difficult to classify it to only one topic.
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Figure 6.4: Number of sentences classified per number of topics.

Topic-Based DSM evaluation

In this step, a different semantic model is trained for each topic. In order decide which
are the best parameters for training the semantic models, we conduct an experiment with
different corpora sizes, vector dimensions and window sizes, using the CBOW architecture
of Word2Vec and 5 iterations. In particular, we extract random sentences from the generic,
web-harvested corpus and form sub-corpora. As this procedure is random, we do the same
experiment 5 times and take the average Spearman Correlation score when evaluating on
the MEN dataset.

By observing the results (figure 6.5), we can see that for 1M and 5M sentences the
dimension of 300 and a window size of 5 give the best possible results. So these are the
parameters that we will use in the topic-semantic models.

6.3 Semantic Similarity

Now we can move on to the evaluation of the mixture model, that performs the semantic
space adaptation of each sentence. As we work in the space of meaning, we can also test
the performance of this model on a semantic similarity task on word level, i.e. to measure
the similarity between pairs of words.

In order to apply the trained LDA model to these datasets, we consider as a sentence
a simple pair, sentence = w1w1. Other possible solutions can be examined which are
presented in Chapter 7.

Again, we measure the number of topics each pair is classified (figure 6.6) and it seems
that most pairs are classified in one topic, while far less are classified to two topics and
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Figure 6.5: Experiment for different corpus size, vector dimension and window size for
CBOW Word2Vec architecture.

three topics. This is the desired result, as it is reasonable that it is very difficult a pair of
words to express more than one sense. Consequently, we can assume that words that are
not so similar can be classified to more than one topic as LDA cannot estimate a specific
topic for them.

(a) Number of pairs per number of topics for
MEN dataset.

(b) Number of pairs per number of topics for
WS-353 dataset.

Figure 6.6: Number of pairs per topic for MEN and WS datasets.

The tables 6.6, present the Spearman correlation results with human ratings, for dif-
ferent ranges of semantic similarity. These ranges were taken arbitrarily for evaluation
purposes and can be altered (6.6).

For both datasets, the same pattern is observed. For the MEN dataset, we can notice an
improvement of approximately 10% for high similarity pairs, whereas for low and median
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Dataset # High Sims (≥ 0.75) # Median Sims ([0.25, 0.75)) # Low Sims (< 0.25)

WS-353 94 227 32
MEN 595 1764 641

Table 6.6: Number of pairs for different similarity ranges for each dataset.

Topics High Sims (> 0.75) Median Sims Low Sims (< 0.25) Overall

10 0.2185 0.6341 0.2993 0.7977
20 0.2394 0.6227 0.2788 0.7972
30 0.2279 0.6109 0.3183 0.7881
40 0.2448 0.5578 0.3098 0.7502
50 0.2105 0.5598 0.2979 0.7512
60 0.2355 0.5522 0.2836 0.7492
70 0.2233 0.5312 0.2856 0.7398
80 0.2144 0.5341 0.2871 0.7337
90 0.2075 0.5388 0.2685 0.7368
100 0.2034 0.5173 0.2917 0.7151

No Topics 0.1568 0.5998 0.2459 0.7728

Table 6.7: Spearman correlation for MEN dataset, using different similarity ranges.

Topics High Sims (> 0.75) Median Sims Low Sims (< 0.25) Overall

10 0.5030 0.5256 0.0632 0.7212
20 0.5188 0.5021 0.2570 0.7248
30 0.5536 0.4920 0.1858 0.7279
40 0.4940 0.4807 0.2413 0.6673
50 0.4697 0.4460 0.0013 0.6590
60 0.4624 0.3950 0.0545 0.6332
70 0.4938 0.4612 0.3419 0.6538
80 0.4837 0.4750 0.2313 0.6913
90 0.5056 0.4603 0.2189 0.6729
100 0.4916 0.3877 0.2910 0.6428

No Topics 0.5014 0.4990 -0.0951 0.7030

Table 6.8: Spearman correlation for WordSim353 dataset, using different similarity ranges.

ones the improvement is of the order of 3% for median similarities and little topics and
5-7% for low similarities. This is an expected behavior. In particular, we know that two
words already form a context. LDA will estimate the most probable topics (context) that
a pair of words can belong. If these words are closely related (high similarity) we will
be able to identify the exact topic in which they co-occur with a high probability. As a
specific semantic model was trained for this topic, the similarity between these words will
be very high. As a result, the final pair similarity will be better in this domain (although it
may not be higher), compared to the baseline model that uses a semantic model trained on
a generic corpus and is influenced by multiple other domains in the corpus. Additionally,
if two words are totally dissimilar, the LDA will have trouble classifying them to a topic
containing both. For this reason, the most possible scenario is to return that they belong
to all topics with the same probability. In every topic, these words will have a very low
similarity score, as they are dissimilar, and the mixture will assign them a value between
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the worst and the best case of their similarity, leading to a more precise calculation of
their actual similarity. For the WS-353 dataset, the low similarities are very few and thus
we cannot explain these results.

High Sims Median Sims Low Sims

Topics # pairs Posteriors Std # pairs Posteriors Std # pairs Posteriors Std

10 595 0.1976 1764 0.193 641 0.1751
20 595 0.1437 1764 0.1386 641 0.1212
30 595 0.1171 1764 0.1124 641 0.0984
40 42 0.0379 354 0.0287 404 0.0156
50 48 0.0487 420 0.0319 409 0.0166
60 36 0.0432 458 0.0252 435 0.0132
70 55 0.0425 454 0.0262 422 0.0116
80 70 0.0491 507 0.0291 429 0.0122
90 68 0.049 595 0.0297 436 0.0093
100 74 0.0402 574 0.0261 449 0.0111

Table 6.9: Number of pairs for MEN dataset, that are classified to more than one topic
along with the standard deviation of their posterior probabilities for the topics they belong.

In order to enhance this explanation, table 6.9 shows the number of pairs that were
classified to more than one topic for the different ranges of similarity. It is observed that
for high similarities (595 pairs) only a few are classified to more than one topic. For
the low similarities, approximately all are classified to more than one topic (as expected)
and for the median the result depends on the connections between the two words and if
they can belong to an existing topic. It is also important to notice that for 10, 20 and 30
topics, all pairs are classified to all topics. This is reasonable because these topics are quite
generic and even terms that are highly related will obtain a probability of 0.1 for the rest
of the topics except from the one they can more probably belong. This is also shown in
figure 6.7 as the histograms for the MEN dataset probabilities during LDA classification.
The highest posterior probability a pair can obtain is 0.67 and one can assume that the
LDA model is biased. However this happens only for the pairs dataset as it will be shown
thereafter.

Finally, considering the number of topics in the overall performance, the improvement
is noticed for 30 and 40 topics, something that contradicts the coherence of these models,
as measured in the previous section. This is something that is strongly related with the
number of data collected for these topics. As illustrated in tables 6.11, 6.10 by increasing
the number of iterations in the construction of the distributional semantic model seems
to improve the high similarities only for 60 topics (but not the overall score) in WS-353
dataset while in MEN dataset an improvement is observed for the median similarities and
consequently the overall score. At this point, it is important to underline that the use
iterations in word2vec models makes it prone to overfitting. The values for 10 and 15
iterations that drop the performance indicate that overfitting makes the topic extremely
specific to the data it contains and reduces it’s generalization ability.

For a small number of topics (usually 10-20), the overall performance can outperform
the baseline (as it increases the median similarities estimation). This can be explained if
we consider the following: Each of the 10 topics, is large enough (15M sentences) so all
the semantic models can be trained adequately. Additionally, the clustering of the corpus
into 10 vague topics, by removing ‘junk’ phrases, reduces the noise in the corpus. In fact,
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Figure 6.7: Posteriors histogram for MEN dataset.

some kind of boosting is performed. The vague topics can estimate well the similarity
between all kinds of words (very similar, not so similar, dissimilar) and the combination
of different similarities results a better estimation of the whole dataset.

Iterations High Sims Median Sims Low Sims Overall

30 topics

1 0.5529 0.4430 0.1555 0.7020
5 0.5536 0.4920 0.1858 0.7279
10 0.5430 0.4622 0.1092 0.7087
15 0.5439 0.4538 0.1678 0.7003

60 topics

1 0.4464 0.3437 0.0707 0.5957
5 0.4624 0.3950 0.0545 0.6332
10 0.4996 0.3747 0.0907 0.6158
15 0.5019 0.3790 0.0683 0.6129

90 topics

1 0.4111 0.4297 0.1329 0.6078
5 0.5056 0.4603 0.2189 0.6729
10 0.4746 0.4562 0.1963 0.6468
15 0.4722 0.4747 0.1423 0.6659

Table 6.10: Different number of iterations when trained the semantic model for 30, 60 and
90 topics for WS-353 dataset.

6.4 Sentiment Estimation

6.4.1 Baseline Training

The whole corpus (90M sentences) is trained with a CBOW model for 5 iterations,
window size = 5 and vector dimension = 300. Firstly, we extract a similarity matrix for
the ANEW lexicon (size 1034 × 1034). By using Word2Vec, we create feature vectors of
dimension 300 for each word in our corpus. However these vectors can contain negative
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Iterations High Sims Median Sims Low Sims Overall

30 topics

1 0.1684 0.5837 0.2750 0.7596
5 0.2279 0.6109 0.3183 0.7881
10 0.2109 0.6036 0.2951 0.7792
15 0.1977 0.5986 0.2991 0.7738

60 topics

1 0.1688 0.4873 0.2204 0.6678
5 0.2355 0.5522 0.2836 0.7492
10 0.2186 0.5602 0.2566 0.7521
15 0.2135 0.5602 0.2335 0.7512

90 topics

1 0.1531 0.4308 0.1665 0.6305
5 0.2075 0.5388 0.2685 0.7368
10 0.1954 0.5457 0.2627 0.7451
15 0.2017 0.5546 0.2660 0.7440

Table 6.11: Different number of iterations when trained the semantic model for 30, 60 and
90 topics for MEN dataset.

values and when measuring the cosine similarity between two vectors we can obtain a
score in [-1,1]. Because the SAM (equation 4.2) does not work with negative similarities,
we apply a type of ‘rectification’, by grounding (making equal to zero) all the negative
similarities. Due to this action, the similarity matrix becomes quite sparse. For this
reason, we need to use the regularized LSE, known as Ridge Regression in order to obtain
good results for more than 100 seed words. By tuning the λ parameters on the ANEW, we
obtain an optimal value of λ = 0.35 which gives a 91.17% accuracy and 0.879 correlation
when applying a 10-fold cross validation on the ANEW dataset for 600 seeds (figure 6.8).

Figure 6.8: 10-fold Cross Validation on ANEW dataset using Ridge Regression and λ =
0.35.

For the SMA, the coefficients α are trained on the whole ANEW lexicon, with the
λ parameter and remain the same for the baseline system (which does not incorporate
topics) and the SMA, as in this model we adapt only the semantic space and not the
mapping between the semantic and the affective space.
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6.4.2 Semantic Model Adaptation

News Headlines

The posteriors histogram for the 1000 sentences is shown in figure 6.9. We can observe
that for 10 and 20 topics, the majority of posteriors obtain very small values, whereas
when the topics augment all possible ranges are covered. The behavior is expected as
when the topics are very abstract and general, most sentences could be classified to all
of them and consequently all topics obtain a common low probability (0.1) except from
the most probable topic. On the other hand, when topics become more specific, LDA
can distinguish them better and classify the sentences more accurately leading to larger
posterior probabilities.

Figure 6.9: Posteriors histogram for 1000 news headlines sentences.

The results obtained with the fusion method are presented below, were we measure
the classification accuracy (percentage of correctly classified samples) and the Spearman
correlation between the correct (human annotated) and the estimated samples.

The results presented, show a significant improvement compared to the baseline system
(no topics) that uses only one generic semantic model. It is important to notice that both
accuracy and correlation take their peak values when using 80 seed words. This implies
that maybe a seed selection procedure should take place in order to detect seed words
that are topic-specific. In fact, when we apply the seed selection method (as described
in Chapter 4) we choose words with high absolute valence scores. Generally, we can
reasonably assume, that words with very high valence scores are unambiguous, which
means that they cannot have more than one sense and are likely to exist in all topics (of
course there are exceptions like ‘cancer’: -0.8 valence scores which can be the disease or
the horoscope sign). By observing these results it is likely that 80 seed words is the best
number of unambiguous collected words that can be used to estimate a unknown word.
This resembles the work of Turney (2002) which used the words “excellent” and “poor” as
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Figure 6.10: Accuracy and Spearman Correlation using linear fusion.

Figure 6.11: Accuracy and Spearman Correlation using weighted fusion.

reference in order to estimate the sentiment of a review. In summary, a better approach
would include as seed words topic-specific words that are able to characterize a new word
in a specific domain. The seed words histograms are shown in figure 6.13.

Moreover, again the 30 topics seem to perform well for all fusion schemes, while the best
score is obtained for 20 topics and 600 seed words. The weighted fusion scheme generally
gives the best results as it weights more the “important” words in a corpus, those that
have a higher absolute valence score. As a result it ignores words with low scores (like
stop-words or names) and focuses on those that give more affective information.

Concerning the correlation, the max fusion scheme gives the worst scores as News
headlines are general purpose sentences that contain striking words with high valence
score but they do not always represent the actual meaning of the sentence. Again, the
reason that small topics seem to perform well can be a) that this is the optimal distinct
number of topics our corpus may contain and b) the noise reduction that is performed.
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Figure 6.12: Accuracy and Spearman Correlation using non-linear max fusion.

Figure 6.13: Histograms for seed words valence scores obtain from ANEW.

Table 6.12 summarizes the best results presented in the figures.

The results using the classification method are presented in figures 6.14, 6.15. The
classifier that was used was a Linear Logistic Regression and a Naive Bayes classifier from
the Weka Toolbox. The features extracted from each sentence’s scores are the following:
min, max, mean, std, var, length, extremum (larger absolute value in the vector), sum,
range and normalized versions of these features according to the length of the sentence.

Based on these results, again we can notice that 20 topics seem to give the best
performance along with 40 topics. However, if we train the model using a Naive Bayed
classifier, we see that 50 topics perform best and the actual improvement is less than in
the fusion scheme. Possibly, the classifier is unable to detect the adaptation scheme as it.
Again in both classifiers, we observe the pick in 80 seed words.
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Linear Fusion Weighted Fusion Max Fusion

Topics Seeds CA (%) CC CA (%) CC CA (%) CC

10 80 74.8 0.6370 76.1 0.5945 76.1 0.5631
20 600 75.2 0.6257 77.2 0.6391 76 0.5719
30 80 75.7 0.6455 76.5 0.6496 75.4 0.6028
40 600 76.4 0.6143 75.9 0.6173 74.9 0.5506
50 80 75.8 0.6406 77 0.6337 76 0.5859
60 500 76.2 0.6051 75.5 0.6078 75 0.5438
100 80 75.6 0.6366 76.7 0.6489 76.5 0.6024

No Topics 200 73.9 0.6142 75.1 0.6272 74.9 0.5429

Table 6.12: Results summary (CA: Classification Accuracy, CC: Classification Correlation
(Spearman)) for sentence polarity detection using SMA.

Figure 6.14: Classification accuracy using Linear Logistic Regression classifier.

Twitter

Additionally, we apply this procedure on the Twitter dataset, and evaluate using the
same features as before with a Naive Bayes Tree classifier (which gives the best perfor-
mance). We measure the average precision, recall, F1 score along with the classification
accuracy.

recall =
TP

TP + FN
, precision =

TP

TP + FP
, F1 = 2 · precision · recall

precision + recall
(6.4)

The results obtained for the twitter dataset using 600 seeds are summarized in the
table 6.13 along with the results of the Tweester system (Palogiannidi et al. (2016))that
was submitted in the task, raking in the first place.

As we can observe the classification accuracy is generally high and for 20 Topics it
surpasses the baseline (No Topics). In fact, the dataset is biased towards positive tweets
as shown in the table 6.14.
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Figure 6.15: Classification accuracy using Naive Bayes classifier.

Topics Accuracy (%) Av. Recall Av. Precision Av. F1 score

10 82.98 0.672 0.7795 0.70005
20 84.72 0.734 0.791 0.755
30 83.41 0.673 0.7955 0.703
40 82.85 0.689 0.7645 0.713
50 83.42 0.678 0.79 0.708
60 82.75 0.6625 0.7795 0.6905
70 83.94 0.72 0.7785 0.742
80 82.51 0.71 0.7495 0.726
90 83.07 0.6635 0.792 0.693
100 76.44 0.754 0.6955 0.708

No Topics 83.27 0.6925 0.7745 0.7185

Tweester 0.862 0.797 - 0.799

Table 6.13: Classification Results for SemEval-2016 Twitter Task B dataset.

# Total Tweets # Positive # Negative

Train 3938 3260 678
Test 10551 8212 2339

Table 6.14: Number of positive and negative tweets in the SemEval-2016 Task 4, Subtask
B dataset.

Considering this, the model performs poorly in the detection of negative sentences and
thus resulting low average recall and average F1 score values.

Generally, the Twitter datasets are considered the most difficult to classify, due to
their informal language, unsual expressions and diverse vocabulary. Consequently, when
training an LDA model to a generic corpus that contains “normal” sentences and not
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Tweets, a large amount of information is lost, as in the evaluation process we do not
consider punctuation, emoticons, elongated words etc, features that play an important role
in the social media datasets. Additionally, the corpus and the twitter dataset were created
in totally different time periods. For example the movie “Ant-Man” is not contained as a
movie name in our corpus. This also makes the classification of the tweets dataset more
difficult.

However, the performance of the model is very encouraging despite all these obstacles
described above, showing that it can have potential when using the appropriate data for
training the LDA model.
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Conclusion

7.1 Conclusions

This thesis discussed the sentiment analysis of sentences in a binary classification
problem using continuous Affective Spaces, Distributional Semantic Models and Topic
Modeling techniques. We proposed a model that aims to improve the classification accu-
racy on sentence-level polarity prediction and the correlation of word-pairs similarity with
human annotations. The main mechanisms that are incorporated in this system, are a
Topic Modeling approach, that can help in the distinction of specific domains or ‘themes’
included in a large collection of documents, the Distributional Semantic Models, that try
to represent the meaning of words in the form of mathematical vectors, by exploiting the
properties of language, and an affective model based on the assumption that the “semantic
similarity implies affective similarity”, which functions as a bridge between the space of
meaning and the space of sentiment.

In more detail, in this work, a novel adaptation approach was introduced which in-
corporates topic knowledge with purpose to adapt the semantic space for each individual
sentence. The model is based on the idea that in order to estimate the affect or the mean-
ing of a sentence, we first need to identify the context (topic) where it belongs. In this
way we will be able to overcome the problem of word disambiguation when estimating
the affective score of words, as a word can express a different meaning and consequently
sentiment, depending on its use in a larger lexical unit.

The basic steps of the algorithm are, a) topics extraction from a web-harvested corpus
using the LDA technique, b) topic-clusters creation by classifying the corpus sentences
into the extracted topics using the trained LDA model and c) a different semantic model
training on each topic sub-corpus. In the final step, the semantic space of a sentence
is adapted, i.e. the similarities between the sentence’s words and an existing annotated
sentiment lexicon. The final similarity matrix for a sentence is produced using a weighted
mixture of the semantic models of the topics it can be classified, which is decided by
applying a trained LDA model to that sentence.

The results obtained from testing on pair-wise semantic similarity between words,
reveal the robustness of the algorithm especially when measuring the similarity of very
related pairs. We showed that a well-trained LDA model can identify with low uncertainty
even the relevant topics for pairs of words. Additionally, it is concluded that the overall
performance can be improved when the topics contain enough data for the good training of
the semantic model, although in general the performance of each individual model depends
on the models parameters. When using predictive models like Word2Vec, the number of
iterations is the main factor that leads to more or less adaptation, but it also introduces
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a form of overfitting that can lead to poor performance.
The performance of the semantic space adaptation mixture model on sentence senti-

ment classification tasks prove that this procedure of two-step classification, i.e. identifying
the topic of interest and then measuring the meaning of a sentence can improve not only
the polarity recognition but also estimate more accurately the actual valence score as-
signed to the sentence. Although a great improvement is achieved when evaluating on
general datasets (e.g. News headlines), social media messages (e.g. Twitter) is a much
more difficult problem and a special training on specific data is needed in order to obtain
better results. However, this generic model shows a decent behavior in this task despite
the loss of important information and the ignorance of stylistic features.

In summary, topic models combined with affective text analysis methods look very
promising in the sentiment analysis of sentences, as they offer a completely unsupervised
way of adapting a semantic model to multiple tasks.

7.2 On-going Work

7.2.1 Semantic-Affective Model Adaptation (SAMA)

An improvement of the algorithm (SMA) is proposed here, that could lead to bet-
ter affective results. Although there are no evaluation results yet for this algorithm, its
motivation and steps are described as part of on-going work.

Motivation

In this approach, we try to adapt both the affective space and the semantic space.
This means that the affective scores are now recalculated additionally to the semantic
similarities as in the SMA. The motivation behind this idea is that the previous algorithm
did not incorporate any knowledge about affect when using topics and thus could lead to
better semantic similarity performance than affective. As shown in the literature, models
that capture sentiment and topic at the same time lead to better results. So the main
idea, is not only to extract different seed words for a topic, but also to adapt the affective
scores of these seed words according to the topic. Then, we can use them in the Semantic-
Affective model (equation 4.2), to estimate multiple topic-affective scores for the words
of a sentence. The final word score is produced using a mixture model of topic-affective
scores. Again the sentence’s score estimation is based on a fusion or classification scheme.

Algorithm

Generally, the topic Modeling procedure up to the step that a different semantic model
is built on each topic-cluster is the same as in the Semantic Model Adaptation (SMA).
The principle change is the affective scores adaptation and the mixture model.

The steps of the algorithm are described below:

1. For each topic:

(a) Select Topic-Seeds according to two criteria

• High frequency in topic

• Balanced set (sum of valence score approximately zero)

(b) Create a similarity matrix of size N × N that contains the similarity pairs
between the topic seeds
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2. While iter < k:

(a) Train α coefficients from semantic-affective model (equation 4.2) for the selected
topic-seeds

(b) Recalculate valence scores for topic-seeds using the semantic-affective model:

vtopic−adapted(seedj) = α0,topic +

N∑
i=1

αi,topicvanew(wi)simtopic(seedj , wi)

3. Apply LDA to each sentence and check the possible topics

4. For each word in the sentence (wsentence):

• Use the semantic similarity between this word and a topic-seed d(wsentence, wtopic−seed)
from a generic DSM (trained on a large corpus)

• Estimate the word’s valence score with SAM for each topic:

vtopic(wsentence) = a0,topic+
N∑
i=1

ai,topicvtopic−adapted(wtopic−seed)d(wsentence, wtopic−seed)

5. Fuse the different valence scores for this word, using topic-posteriors to obtain the
final valence score of the word

vfinal(wsentence) =

∑T
t=1 p(ti|sentence) · vt(wsentence)∑T

t=1 p(ti|sentence)

7.3 Directions for Future Work

The model proposed in this thesis, contains a plethora of different parameters that
must be tuned in order to improve the general performance of the model. In all the
experiments described in Chapter 6, standard implementations for Topic Modeling and
Semantic Models were used due to the huge amount of data produced by these models,
for all possible topics.

Some possible ideas for future work on this domain are described below.

Topic Modeling

• The topic modeling method (LDA) can be easily altered, in order to be applied
directly to sentences and not documents. Different implementations can be found in
the web according to the data one needs to analyze (1, 2).

• The simple topic construction method that we used can be improved. An example is
to classify each sentence to all topics it may belong and keep the information of the
posterior probability for use in the semantic model. This is a possible “weighted”
soft clustering. Alternatively, no topic modeling can be used, and other classification
methods (such as K-Means) can take its place.

1https://github.com/datquocnguyen/LFTM/
2https://github.com/minghui/Twitter-LDA

https://github.com/datquocnguyen/LFTM/
https://github.com/minghui/Twitter-LDA
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Semantic Models

• Other models can replace Word2Vec, such as classic context-based approaches using
PPMI features or the Glove package 3.

• For all topics, the parameters of the semantic model were fixed. A possible extension
would be to use different parameters for each topic (although it may be difficult for
large number of topics). Performance may increase by tuning the following important
parameters of Word2Vec are:

– vector dimension

– window size

– number of iterations

– algorithm (CBOW, SkipGram)

• Additionally, as far as the normalization of feature vectors extracted by the semantic
model is concerned, except from the norm-1 normalization (unit vector) that we used,
z-score or min-max may improve performance.

Semantic Model Adaptation

Concerning the first model, that tries to adapt the semantic space of each sentence as
a mixture of topic-semantic spaces the following can be examined:

• A seed selection approach as it is observed that the model performs best when the
number of seed words is low.

• A different mixture model, that can weight more the high similarities between pairs.

• Another idea is to only adapt the feature vectors of topic words. This means the all
other words vectors (seeds or not) that are ‘generic’ can be trained using a general
corpus and not a topic-specific corpus.

• An idea concerning the task of semantic similarity between words is to give sentences
as input to the LDA and not just two words. This can be achieved with the help of
WordNet. For each word of interest, one can obtain the definition of the multiple
senses of this word. All possible combinations of definitions can be created between
two terms. The final similarity will be the maximum among all results according
to the ‘maximum sense hypothesis’: “The similarity of two words is the maximum
similarity among their senses”.

3http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/


Appendix A

Gensim Toolbox

The Gensim Toolbox 1 created by Řeh̊uřek and Sojka (2010) is a collection of scripts
written in Python. It’s name comes from the “Generate Similar” as it was firstly used to
collect the most similar articles for a given article. In this thesis, we used both the Topic
Modeling tools, as well as the implementation of Word2Vec that offers in python. These
two tools are described below, with examples from the page’s tutorials.

A.1 Topic Modeling

In order to use topic modeling in gensim, we firstly need to transform the input col-
lection of documents. The first step is the construction of a dictionary:

1https://radimrehurek.com/gensim/
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If we try to print the dictionary we can see:

For a new sentence, the transformation to BOW using the vocabulary is shown below:

Gensim, is able to handle large collections, by loading only one line at a time, avoiding
the large memory usage. This can be achieved with the use of an iterator, that converts
each line into BOW format, using the dictionary created above. We can call this iterator,
and save our corpus in Matrix Market format (other formats are used as well).

The next step is to load the corpus and the dictionary and apply a transformation.
In our case we used the LDA transformation and more specifically the LDAMulticore
implementation that is able to run in parallel:

Finally, after the model is trained, for each new sentence we can check where the
trained model classifies them as follows:

In general, the parameters of LDA are the following.

Parameters

num topics: the number of topics to be created
id2word: the dictionary that will be used for the topic construction
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aplha, eta: hyperparameters of document-topic and topic-word distributions. The default
values are 1/number of topics.
minimum probability: Topics that give posterior probability below this number are ignored
(default is 0.001).
iterations: number of passes for each chunk of documents

A.2 Word2Vec

In the same way, word2vec can load one line at a time and then appying the word2vec
algorithm. There are many parameters that can be tuned, as they are described below.

Parameters

size: Dimension of the feature vector
window: Context window around the term of interest (w words left, w words right)
workers: number of threads to be used
sg: if 1 skip-gram algorithm is used, if 0 cbow algorithm is used
hs: if 1 hierarchical softmax is used as inference method, if 0 and negative is non-zero,
negative sampling is used
negative: if > 0, negative sampling is used and the number is equal to the “noise words”
that should be drawn (usually between 5-20)
cbow mean: if 0, the sum of the context word vectors will be used, if 1 the mean will be
used
iter: the number of epochs over the corpus
min count: minimum frequency of words. Words with frequency below this value will be
ignored.
max vocab size: maximum vocabulary size created during training. The infrequent words
are cropped.
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Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50. ELRA, 2010.



Bibliography 89

Joseph Reisinger and Raymond Mooney. A mixture model with sharing for lexical seman-
tics. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1173–1182. Association for Computational Linguistics, 2010.

Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The author-
topic model for authors and documents. In Proceedings of the 20th conference on Un-
certainty in artificial intelligence, pages 487–494. AUAI Press, 2004.

James A Russell. A circumplex model of affect. Journal of Personality and Social Psy-
chology, 39(6):1161–1178, 1980.

Magnus Sahlgren. The Word-space model. PhD thesis, Citeseer, 2006.

Hinrich Schiitze. Word space. Advances in neural information processing systems, 5:
895–902, 1993.

Jonathan Schler. The importance of neutral examples for learning sentiment. In In Work-
shop on the Analysis of Informal and Formal Information Exchange during Negotiations
(FINEXIN. Citeseer, 2005.

Harold Schlosberg. Three dimensions of emotion. Psychological review, 61(2):81, 1954.

Kazutaka Shimada and Tsutomu Endo. Seeing several stars: A rating inference task for
a document containing several evaluation criteria. In Advances in Knowledge Discovery
and Data Mining, pages 1006–1014. Springer, 2008.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent semantic
analysis, 427(7):424–440, 2007.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede.
Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2):267–
307, 2011.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet Processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

Peter Turney and Michael L Littman. Unsupervised learning of semantic orientation from
a hundred-billion-word corpus. 2002.

Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied to unsuper-
vised classification of reviews. In Proceedings of the 40th annual meeting on association
for computational linguistics, pages 417–424. Association for Computational Linguistics,
2002.

Peter D Turney and Michael L Littman. Measuring praise and criticism: Inference of
semantic orientation from association. ACM Transactions on Information Systems
(TOIS), 21(4):315–346, 2003.

Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vector space models
of semantics. Journal of artificial intelligence research, 37(1):141–188, 2010.



90 Bibliography

Sudha Verma, Sarah Vieweg, William J Corvey, Leysia Palen, James H Martin, Martha
Palmer, Aaron Schram, and Kenneth Mark Anderson. Natural Language Processing to
the Rescue? Extracting” Situational Awareness” Tweets During Mass Emergency. In
ICWSM. Citeseer, 2011.

Chong Wang and David M Blei. Decoupling sparsity and smoothness in the discrete
hierarchical dirichlet process. In Advances in neural information processing systems,
pages 1982–1989, 2009.

Bing Xiang, Liang Zhou, and Thomson Reuters. Improving twitter sentiment analysis
with topic-based mixture modeling and semi-supervised training. In ACL (2), pages
434–439, 2014.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. Relation classifica-
tion via convolutional deep neural network. In COLING, pages 2335–2344, 2014.

Jingbo Zhu, Muhua Zhu, Huizhen Wang, and Benjamin K Tsou. Aspect-based sentence
segmentation for sentiment summarization. In Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for mass opinion, pages 65–72. ACM,
2009.




	Acknowledgments
	
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Affective Text Analysis
	Emotion Representation
	Topic Models
	Distributional Semantics

	Thesis Scope & Contribution
	Thesis Organization

	Related Work
	Sentiment Analysis in Reviews and Sentences
	Machine Learning approaches
	Feature Space in ML
	Semantic Orientation Approaches
	Lexicon-based approaches

	Distributional Semantic Modeling
	The Methods of Topic Modeling
	Sentiment Analysis using Topic Models

	Latent Dirichlet Allocation (LDA)
	Theoretical Explanation
	Statistical Explanation
	Notation and Terminology
	Algorithm
	Inference Methods


	Semantic and Affective Models
	Distributional Semantic Models
	Definition
	Functionality
	Word2Vec

	Affective Model
	From Semantic to Affective Space
	Word-level tagging
	Sentence-level tagging


	Sentence-level Adaptation
	Motivation
	Topic Modeling
	Latent Model training
	Topics Construction

	Semantic Model Adaptation (SMA)
	Mixture of Models
	Sentiment Prediction


	Experimental Procedure & Results
	Datasets Desciption
	Topics Evaluation
	Semantic Similarity
	Sentiment Estimation
	Baseline Training
	Semantic Model Adaptation


	Conclusion
	Conclusions
	On-going Work
	Semantic-Affective Model Adaptation (SAMA)

	Directions for Future Work

	Gensim Toolbox
	Topic Modeling
	Word2Vec

	Bibliography

