### DISTANTLY SUPERVISED RELATION EXTRACTION WITH SENTENCE RECONSTRUCTION AND KNOWLEDGE BASE PRIORS

Fenia Christopoulou Makoto Miwa Sophia Ananiadou



The University of Manchester





### DISTANTLY SUPERVISED RELATION EXTRACTION (DSRE)

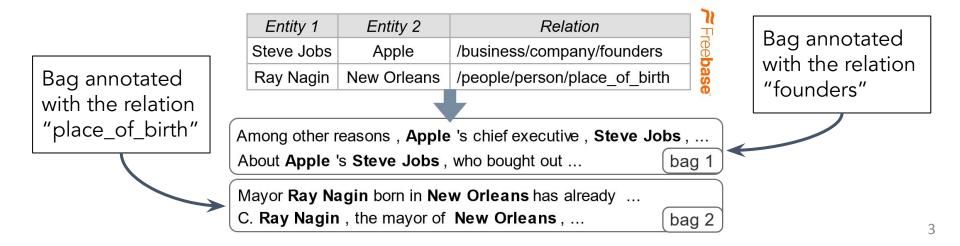
Automatically annotate corpora with relation pairs using a Knowledge Base (KB) as source

### DISTANTLY SUPERVISED RELATION EXTRACTION (DSRE)

Automatically annotate corpora with relation pairs using a Knowledge Base (KB) as source

**RELAXED ASSUMPTION** [Riedel et al., 2010]

There is at least one sentence expressing the relation of a pair in a KB

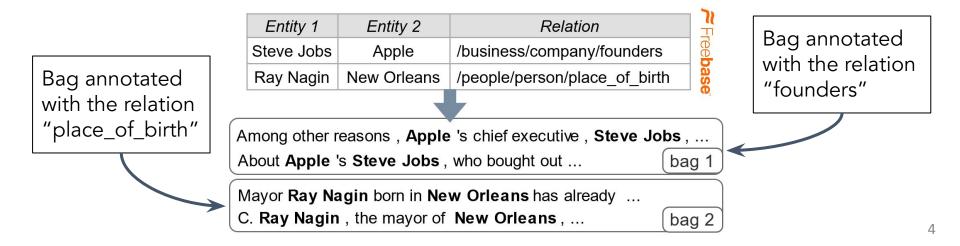


### DISTANTLY SUPERVISED RELATION EXTRACTION (DSRE)

Automatically annotate corpora with relation pairs using a Knowledge Base (KB) as source

**GOAL**: Identify the relation of the bag from a *predefined set of relations* 

→ *Multi-label classification* problem (one bag can have multiple relations)



- Advantages of Distantly Supervised Relation Extraction (DSRE)
  - Automatically annotate raw data with relations
  - Use distantly annotated data for KB augmentation [Ji and Grishman, 2011]

- Advantages of Distantly Supervised Relation Extraction (DSRE)
  - Automatically annotate raw data with relations
  - Use distantly annotated data for KB augmentation [Ji and Grishman, 2011]

### • Disadvantages

- $\circ$  Noisy instances  $\rightarrow$  The relation is not expressed in any of the sentences
- $\circ$  Long tail relations  $\rightarrow$  Very few occurrences of certain relation categories
- $\circ$  Unbalanced bag size  $\rightarrow$  Most bags include only 1 sentence

- Advantages of Distantly Supervised Relation Extraction (DSRE)
  - Automatically annotate raw data with relations
  - Use distantly annotated data for KB augmentation [Ji and Grishman, 2011]

### • Disadvantages

- $\circ$   $\:$  Noisy instances  $\rightarrow$  The relation is not expressed in any of the sentences
- $\circ$  Long tail relations  $\rightarrow$  Very few occurrences of certain relation categories
- $\circ$  Unbalanced bag size  $\rightarrow$  Most bags include only 1 sentence

Existing approaches use

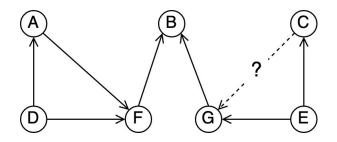
- Attention mechanisms [Lin et al., 2016; Ye and Ling, 2019]
- Reinforcement learning [Qinet al., 2018b; Wu et al., 2019]
- Relation type hierarchies, Entity descriptors [She et al., 2018; Zhang et al., 2019; Hu et al., 2019]
- Information from KBs (e.g. entity types, relation aliases) [Vashishth et al., 2018]
- Additional training data [Beltagy et al., 2019], Pre-trained Language Models [Alt et al., 2019]

- Advantages of Distantly Supervised Relation Extraction (DSRE)
  - Automatically annotate raw data with relations
  - Use distantly annotated data for KB augmentation [Ji and Grishman, 2011]
- Disadvantages
  - $\circ$  Noisy instances  $\rightarrow$  The relation is not expressed in any of the sentences
  - $\circ$  Long tail relations  $\rightarrow$  Very few occurrences of certain relation categories
  - $\circ$  Unbalanced bag size  $\rightarrow$  Most bags include only 1 sentence

# This work Existing approaches use Attention mechanisms [Lin et al., 2016; Ye and Ling, 2019] Reinforcement learning [Qinet al., 2018b; Wu et al., 2019] Relation type hierarchies, Entity descriptors [She et al., 2018; Zhang et al., 2019; Hu et al., 2019] Information from KBs (e.g. entity types, relation aliases) [Vashishth et al., 2018] Additional training data [Beltagy et al., 2019], Pre-trained Language Models [Alt et al., 2019]

### INCORPORATING KB INFORMATION

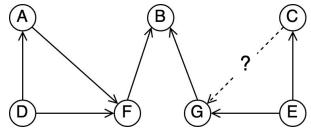
Take advantage of Link Prediction (find missing relations in Knowledge Graphs)



# INCORPORATING KB INFORMATION

Take advantage of Link Prediction (find missing relations in Knowledge Graphs)

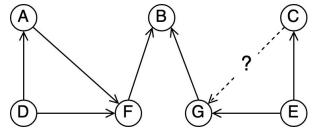
- Explicit agreement of sentence- and KB-level classifications [Weston et al., 2013; Xu and Barbosa, 2019]
- KB embeddings as attention queries [Han et al., 2018; Hu et al., 2019]
- Minimise the distance between KB and sentence representations [Wang et al., 2018]



# Incorporating KB Information

Take advantage of Link Prediction (find missing relations in Knowledge Graphs)

- Explicit agreement of sentence- and KB-level classifications [Weston et al., 2013; Xu and Barbosa, 2019]
- KB embeddings as attention queries [Han et al., 2018; Hu et al., 2019]
- Minimise the distance between KB and sentence representations [Wang et al., 2018]

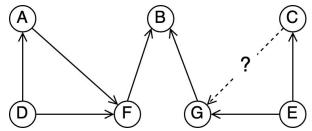


- → Rigid connection between context-agnostic (KB) and context-aware (sentences) pairs
- $\rightarrow$  Need representations of entities on the test set  $\rightarrow$  Poor generalisation to unseen examples

# Incorporating KB Information

Take advantage of Link Prediction (find missing relations in Knowledge Graphs)

- Explicit agreement of sentence- and KB-level classifications [Weston et al., 2013; Xu and Barbosa, 2019]
- KB embeddings as attention queries [Han et al., 2018; Hu et al., 2019]
- Minimise the distance between KB and sentence representations [Wang et al., 2018]



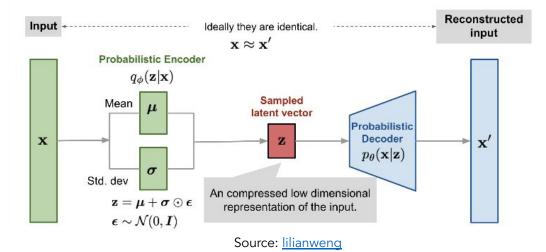
- → Rigid connection between context-agnostic (KB) and context-aware (sentences) pairs
- $\rightarrow$  Need representations of entities on the test set  $\rightarrow$  Poor generalisation to unseen examples

Use KB signals to promote generalisation to unseen entity pairs via a probabilistic approach

Bring closer sentences containing the same KB pairs

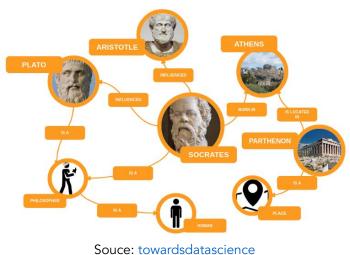
### PROPOSED APPROACH: MAIN IDEA

- 1. Variational Autoencoders (VAEs) [Kingma and Welling, 2013]
  - Latent variable encoder-decoder models
  - Parameterise posterior distributions using neural networks
  - Learn an effective latent space influenced by a prior distribution
  - Sentence reconstruction helps sentence expressivity by learning semantic or syntactic similarities in the sentence space



### PROPOSED APPROACH: MAIN IDEA

- 1. Variational Autoencoders (VAEs) [Kingma and Welling, 2013]
  - Latent variable encoder-decoder models
  - Parameterise posterior distributions using neural networks
  - Learn an effective latent space influenced by a prior distribution
  - Sentence reconstruction helps sentence expressivity by learning semantic or syntactic similarities in the sentence space
- 2. Information from Knowledge Graphs
  - Detection of factual relations



# PROPOSED APPROACH: MAIN IDEA

- Variational Autoencoders (VAEs) [Kingma and Welling, 2013] 1.
  - Latent variable encoder-decoder models Ο
  - Parameterise posterior distributions using neural networks Ο
  - Learn an effective latent space influenced by a prior distribution Ο
  - Sentence reconstruction helps sentence expressivity by learning Ο semantic or syntactic similarities in the sentence space

### Combination in a multi-task learning setting

2. Information from Knowledge Graphs Entity 1 Relation Entity 2 Detection of Ο Link Steve Jobs /business/company/founders Apple Prediction factual relations Ray Nagin New Orleans /people/person/place\_of\_birth Among other reasons , Apple 's chief executive , Steve Jobs , ... About Apple 's Steve Jobs , who bought out ... Create informative priors to  $p(z_1)$ assist bag classification Mayor Ray Nagin born in New Orleans has already .... C. Ray Nagin , the mayor of New Orleans , ...  $p(z_2)$ 

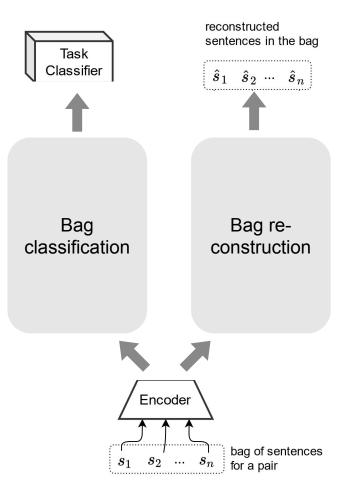
-reebase

bag 1

bag 2

### METHODOLOGY

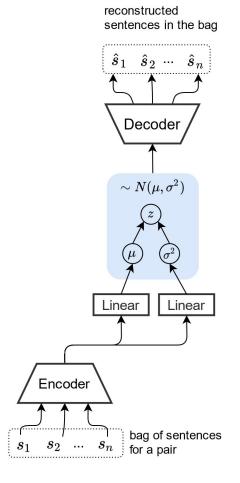
- Model input:
  - $\circ$  An entity pair  $e_1, e_2$
  - A bag of sentences
    - $B = \{s_1, s_2, \dots, s_n\}$  that contain the pair
- Model output:
  - Predicted relations for the given pair
  - $\circ$   $\,$  Reconstructed sentences in the bag  $\,$
- 2 Branches
  - Left: Classifier with selective attention
  - Right: VAE



- Encoder: BiLSTM [Hochreiter et al., 1997]
- The last hidden and cell states of the encoder are used to construct the parameters of a multivariate Gaussian

$$oldsymbol{\mu} = \mathbf{W}_{oldsymbol{\mu}}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{oldsymbol{\mu}}, \quad oldsymbol{\sigma}^2 = \mathbf{W}_{\sigma}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{\sigma},$$

representing the feature space of the sentence



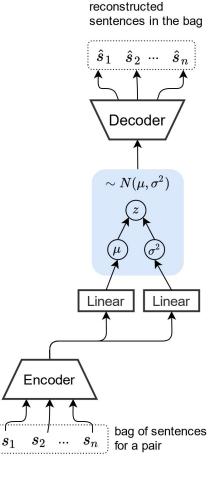
- Encoder: BiLSTM [Hochreiter et al., 1997]
- The last hidden and cell states of the encoder are used to construct the parameters of a multivariate Gaussian

$$oldsymbol{\mu} = \mathbf{W}_{oldsymbol{\mu}}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{oldsymbol{\mu}}, \quad oldsymbol{\sigma}^2 = \mathbf{W}_{\sigma}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{\sigma},$$

representing the feature space of the sentence

• Re-parameterisation trick [Kingma and Welling, 2013]  $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$ , where  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 

Prior is assumed the Normal Distribution

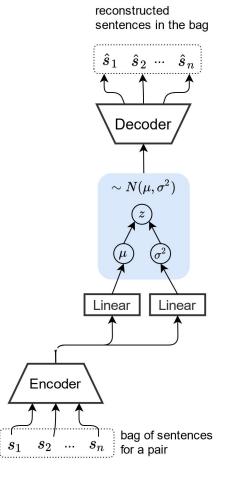


- Encoder: BiLSTM [Hochreiter et al., 1997]
- The last hidden and cell states of the encoder are used to construct the parameters of a multivariate Gaussian

$$oldsymbol{\mu} = \mathbf{W}_{oldsymbol{\mu}}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{oldsymbol{\mu}}, \hspace{1em} \sigma^2 = \mathbf{W}_{\sigma}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{\sigma},$$

representing the feature space of the sentence

- Re-parameterisation trick [Kingma and Welling, 2013]  $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$ , where  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
- Decoder: Unidirectional LSTM
  - Fed the latent code z following Bowman et al. (2016)



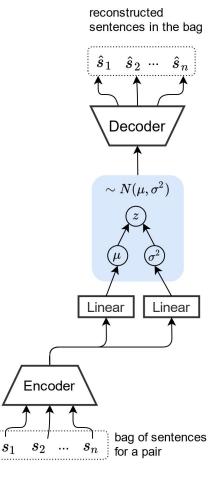
- Encoder: BiLSTM [Hochreiter et al., 1997]
- The last hidden and cell states of the encoder are used to construct the parameters of a multivariate Gaussian

$$oldsymbol{\mu} = \mathbf{W}_{oldsymbol{\mu}}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{oldsymbol{\mu}}, \quad oldsymbol{\sigma}^2 = \mathbf{W}_{\sigma}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{\sigma}$$

representing the feature space of the sentence

- Re-parameterisation trick [Kingma and Welling, 2013]  $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$ , where  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
- Decoder: Unidirectional LSTM
  - Fed the latent code z following Bowman et al. (2016)
- Learning: Minimize Evidence LOwer Bound (ELBO)

 $L_{\text{ELBO}} = \mathbb{E}_{z \sim q_{\phi}(z|h)} \left[ \log(p_{\theta}(\mathbf{h}|\mathbf{z})) \right] - D_{\text{KL}} \left( q_{\phi}(\mathbf{z}|\mathbf{h}) || p_{\theta}(\mathbf{z}) \right)$ 



- Encoder: BiLSTM [Hochreiter et al., 1997]
- The last hidden and cell states of the encoder are used to construct the parameters of a multivariate Gaussian

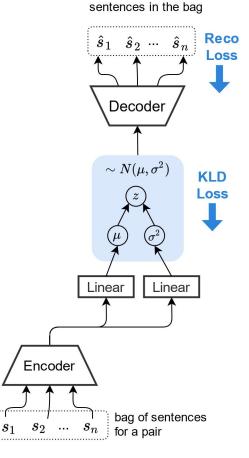
$$oldsymbol{\mu} = \mathbf{W}_{oldsymbol{\mu}}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{oldsymbol{\mu}}, \hspace{1em} \sigma^2 = \mathbf{W}_{\sigma}[\mathbf{h};\mathbf{c}] + \mathbf{b}_{\sigma},$$

representing the feature space of the sentence

- Re-parameterisation trick [Kingma and Welling, 2013]  $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$ , where  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
- Decoder: Unidirectional LSTM
  - Fed the latent code z following Bowman et al. (2016)
- Learning: Minimize Evidence LOwer Bound (ELBO)

 $L_{\text{ELBO}} = \mathbb{E}_{z \sim q_{\phi}(z|h)} \left[ \log(p_{\theta}(\mathbf{h}|\mathbf{z})) \right] \quad \text{Reconstruction Loss}$ 

 $D_{\mathrm{KL}}\left(q_{\phi}(\mathbf{z}|\mathbf{h})||p_{\theta}(\mathbf{z})\right)$  Kullback-Leibler divergence



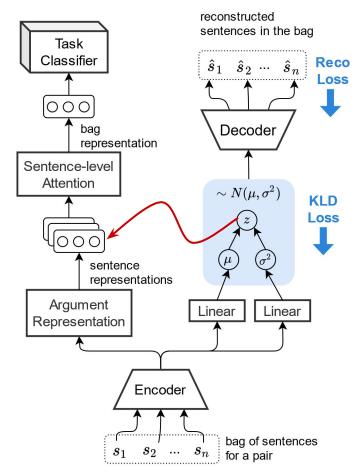
reconstructed

### BAG CLASSIFICATION

SENTENCE REPRESENTATION

• Create a sentence representation s using the latent code z and each entity of the pair

 $\mathbf{s} = \mathbf{W}_v[\mathbf{z}; \mathbf{e}_1; \mathbf{e}_2]$ 



### BAG CLASSIFICATION

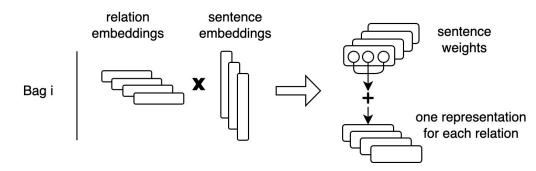
### SENTENCE REPRESENTATION

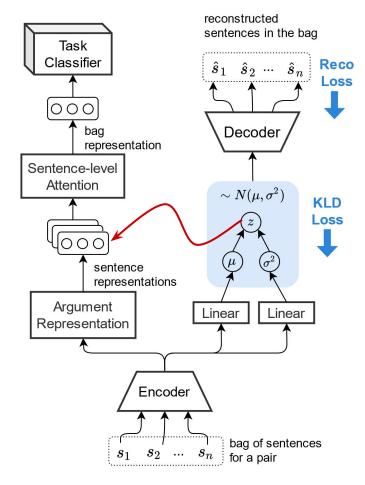
• Create a sentence representation s using the latent code z and each entity of the pair

 $\mathbf{s} = \mathbf{W}_v[\mathbf{z}; \mathbf{e}_1; \mathbf{e}_2]$ 

### BAG REPRESENTATION

• Use selective attention from Lin et al. (2016)





### BAG CLASSIFICATION

### LEARNING

- Use the respective bag relation embedding
- Binary cross entropy loss

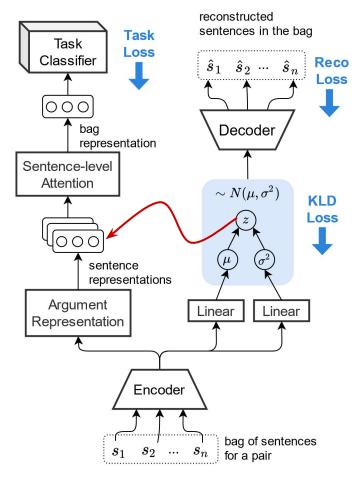
 $p(r=1|B) = \sigma(\mathbf{W}_c \ \mathbf{B}_r + \mathbf{b}_c)$ 

$$L_{\text{BCE}} = -\sum_{r} y_r \log p(r|B) + (1 - y_r) \log(1 - p(r|B))$$

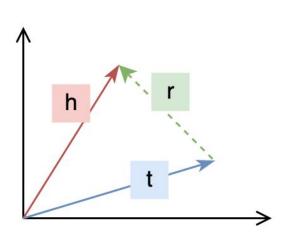
### TRAINING OBJECTIVE

• Linear combination of VAE loss and task loss

 $L = \lambda L_{\text{BCE}} + (1 - \lambda) L_{\text{ELBO}}$ 



### KNOWLEDGE BASE PRIORS

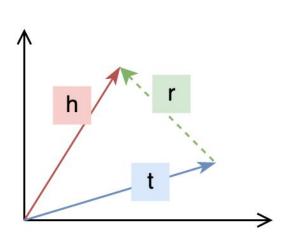


- Inject KB information into the model
- KB Priors:
  - Another Gaussian distribution
  - Mean value ~ KB pair representation
  - Covariance equal to the Identity Matrix
- TransE Link Prediction algorithm [Bordes et al., 2013]
   Relations are represented as translations in the embedding space

$$p_{\theta}(\mathbf{z}) \sim \mathcal{N}(\boldsymbol{\mu}_{\text{KB}}, \mathbf{I}), \text{ with } \boldsymbol{\mu}_{\text{KB}} = \mathbf{e}_h - \mathbf{e}_t$$

Identity Covariance Entity embeddings from TransE

### KNOWLEDGE BASE PRIORS



- Inject KB information into the model
- KB Priors:
  - Another Gaussian distribution
  - Mean value ~ KB pair representation
  - Covariance equal to the Identity Matrix
- TransE Link Prediction algorithm [Bordes et al., 2013]
   Relations are represented as translations in the embedding space

Expect the sentence latent space to become similar to that of the KG

$$p_{\theta}(\mathbf{z}) \sim \mathcal{N}(\boldsymbol{\mu}_{\text{KB}}, \mathbf{I}), \text{ with } \boldsymbol{\mu}_{\text{KB}} = \mathbf{e}_h - \mathbf{e}_t$$

Identity Covariance Entity embeddings from TransE

# EXPERIMENTAL SETTINGS

- Two distantly supervised datasets NYT-10 [Riedel et al., 2010], WikiDistant [Han et al., 2020]
- NYT-10:
  - 570K instances: Containing overlaps between train and test pairs
  - 520K instances: Clean data, no overlaps
- Knowledge Graphs used with TransE:
  - Freebase 3M entities [Xu et al., 2019], Wikidata 5M entities [Wang et al., 2019]

| Dataset                         | Split                 | Instances                     | Bags                        | NA (%)               |
|---------------------------------|-----------------------|-------------------------------|-----------------------------|----------------------|
| NYT10<br># Relations: 53        | Train<br>Val.<br>Test | 469,290<br>53,321<br>172,448  | 252,044<br>28,109<br>96,678 | 93.4<br>93.5<br>97.9 |
| WIKIDISTANT<br># Relations: 454 | Train<br>Val.<br>Test | 1,050,246<br>29,145<br>28,897 | 575,620<br>14,748<br>15,509 | 64.8<br>70.6<br>72.0 |



### BASELINES

- *Baseline*: Simple bag classification, no VAE component at all
- $p_{\theta}(z) \sim \mathcal{N}(0, \mathbf{I})$ : Multi-task learning with Normal priors
- $p_{\theta}(z) \sim \mathcal{N}(\mu_{\text{KB}}, \mathbf{I})$ : Multi-task learning with KB priors

Proposed Approach

### Prior Works:

- PCNN-ATT: Simple selective attention over instances in the bag [Lin et al., 2016]
- Intra-Inter: Intra-Inter bag attention [Ye and Ling, 2019]
- JointNRE: Joint training of Link Prediction and Bag classifications [Han et al., 2018]
- RESIDE: Additional KB information (entity types, relation aliases) [Vashishth et al., 2018]
- DISTRE: GPT-2 pre-trained language model [Alt et al., 2019]

Metrics:

- Area Under the Curve (AUC) score  $\rightarrow$  Area under the Precision-Recall curve
- Precision at N (P@N)  $\rightarrow$  Precision of the top N most confident predictions

| <b>Results:</b> NYT-10                                 | Version without overlaps |              |          |      |      |  |  |
|--------------------------------------------------------|--------------------------|--------------|----------|------|------|--|--|
|                                                        |                          | $\checkmark$ |          |      |      |  |  |
|                                                        |                          | Ν            | NYT 520K |      |      |  |  |
| Method                                                 | Encoder                  | AUC (%)      | P@N (%)  |      |      |  |  |
|                                                        |                          |              | 100      | 200  | 300  |  |  |
| Baseline                                               |                          | 34.94        | 74.0     | 67.5 | 67.0 |  |  |
| $+  p_{	heta}(z) \sim \mathcal{N}(0,I)$                | BiLSTM                   | 38.59        | 74.0     | 74.5 | 71.6 |  |  |
| $(+ p_{	heta}(z) \sim \mathcal{N}(\mu_{	ext{KB}}, I))$ |                          | 42.89        | 83.0     | 75.5 | 73.0 |  |  |
| PCNN-ATT (Lin et al., 2016)                            | PCNN                     | 32.66        | 71.0     | 67.5 | 62.6 |  |  |
| JOINT NRE (Han et al., 2018)                           | CNN                      | 30.62        | 60.0     | 57.0 | 55.3 |  |  |
| RESIDE (Vashishth et al., 2018)                        | BiGRU                    | 35.80        | 80.0     | 69.0 | 65.3 |  |  |
| INTRA-INTER BAG (Ye and Ling, 2019)                    | PCNN                     | 34.41        | 82.0     | 74.0 | 69.0 |  |  |
| DISTRE (Alt et al., 2019)                              | GPT-2                    | 42.20        | 68.0     | 67.0 | 65.3 |  |  |

- +4% boost in AUC over the Baseline with Normal priors
- +8% boost in AUC over the Baseline with KB priors
- Improve performance over a pre-trained language model (GPT-2)

| <b>Results:</b> NYT-10                                 | Version without overlaps |         |          | Version with overlaps |         |          |      |      |      |
|--------------------------------------------------------|--------------------------|---------|----------|-----------------------|---------|----------|------|------|------|
|                                                        |                          | ↓ .     |          |                       | ↓ .     |          |      |      |      |
|                                                        |                          | 1       | NYT 520K |                       |         | NYT 570K |      |      |      |
| Method                                                 | Encoder                  | AUC (%) | P@N (%)  |                       | AUC (%) | P@N (%)  |      |      |      |
|                                                        |                          |         | 100      | 200                   | 300     |          | 100  | 200  | 300  |
| Baseline                                               |                          | 34.94   | 74.0     | 67.5                  | 67.0    | 43.59    | 84.0 | 77.0 | 75.3 |
| $+  p_{	heta}(z) \sim \mathcal{N}(0,I)$                | BiLSTM                   | 38.59   | 74.0     | 74.5                  | 71.6    | 44.64    | 80.0 | 76.0 | 75.6 |
| $(+ p_{	heta}(z) \sim \mathcal{N}(\mu_{	ext{kb}}, I))$ |                          | 42.89   | 83.0     | 75.5                  | 73.0    | 45.52    | 81.0 | 77.5 | 73.6 |
| PCNN-ATT (Lin et al., 2016)                            | PCNN                     | 32.66   | 71.0     | 67.5                  | 62.6    | 36.25    | 76.0 | 72.5 | 64.0 |
| JOINT NRE (Han et al., 2018)                           | CNN                      | 30.62   | 60.0     | 57.0                  | 55.3    | 40.15    | 75.8 | -    | 68.0 |
| RESIDE (Vashishth et al., 2018)                        | BiGRU                    | 35.80   | 80.0     | 69.0                  | 65.3    | 41.60    | 84.0 | 78.5 | 75.6 |
| INTRA-INTER BAG (Ye and Ling, 2019)                    | PCNN                     | 34.41   | 82.0     | 74.0                  | 69.0    | 42.20    | 91.8 | 84.0 | 78.7 |
| DISTRE (Alt et al., 2019)                              | GPT-2                    | 42.20   | 68.0     | 67.0                  | 65.3    | -        | -    | -    | -    |

- Similar observations for the version with train-test pair overlaps
- Pair overlaps significantly benefit prior models
- Tail of the distribution is improved when including test pairs in the training set

### **RESULTS:** WIKIDISTANT

| Method                                               | AUC (%) | P@N (%) |      |      |  |
|------------------------------------------------------|---------|---------|------|------|--|
|                                                      |         | 100     | 200  | 300  |  |
| Baseline                                             | 28.54   | 94.0    | 93.0 | 88.3 |  |
| $+ p_{	heta}(z) \sim \mathcal{N}(0, I)$              | 30.59   | 96.0    | 93.5 | 89.3 |  |
| $+ p_{	heta}(z) \sim \mathcal{N}(\mu_{	ext{kb}}, I)$ | 29.54   | 92.0    | 89.0 | 90.0 |  |
| PCNN-ATT (Han et al., 2020)                          | 22.20   | -       | -    | -    |  |

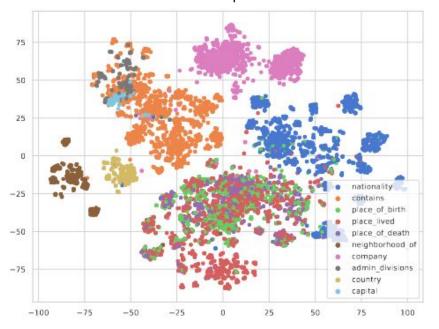
- KB Priors seem to not help
- We find that only 72% of training pairs are assigned a KB prior (vs 96% in NYT-10)
- Repeat experiments by removing 28% of the data

### **RESULTS:** WIKIDISTANT

| Method                                                   | AUC (%) | P@N (%) |      |      |  |  |  |
|----------------------------------------------------------|---------|---------|------|------|--|--|--|
|                                                          |         | 100     | 200  | 300  |  |  |  |
| Baseline                                                 | 28.54   | 94.0    | 93.0 | 88.3 |  |  |  |
| $+  p_{	heta}(z) \sim \mathcal{N}(0,I)$                  | 30.59   | 96.0    | 93.5 | 89.3 |  |  |  |
| $+  p_{	heta}(z) \sim \mathcal{N}(\mu_{	ext{kb}}, I)$    | 29.54   | 92.0    | 89.0 | 90.0 |  |  |  |
| PCNN-ATT (Han et al., 2020)                              | 22.20   | -       | _    | -    |  |  |  |
| w/o non KB-prior pairs (72% of training pairs preserved) |         |         |      |      |  |  |  |
| Baseline                                                 | 26.16   | 88.0    | 85.0 | 82.6 |  |  |  |
| $+  p_{	heta}(z) \sim \mathcal{N}(0,I)$                  | 27.46   | 90.0    | 88.0 | 84.6 |  |  |  |
| $+  p_{	heta}(z) \sim \mathcal{N}(\mu_{	ext{kb}}, I)$    | 28.38   | 94.0    | 95.0 | 89.3 |  |  |  |

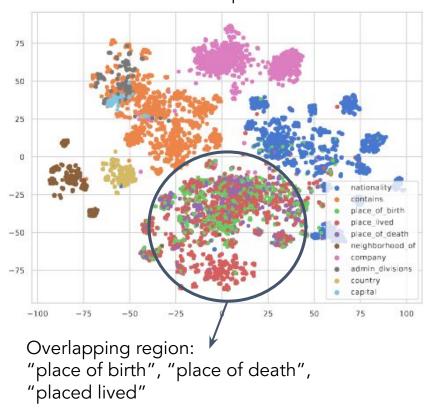
- KB Priors seem to not help
- We find that only 72% of training pairs are assigned a KB prior (vs 96% in NYT-10)
- Repeat experiments by removing 28% of the data
- Coverage of training pair priors is important

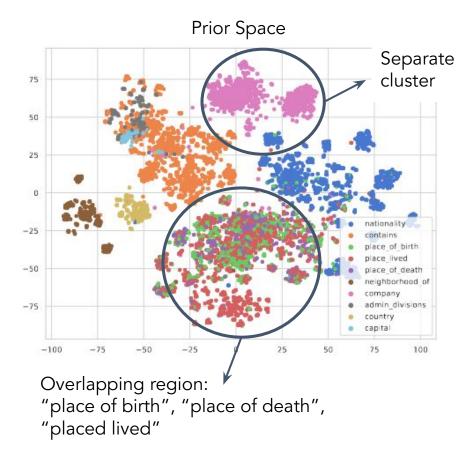
Prior Space

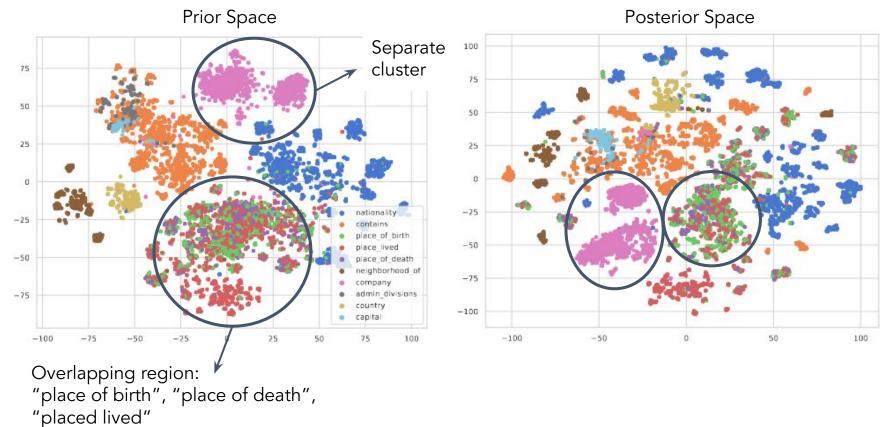


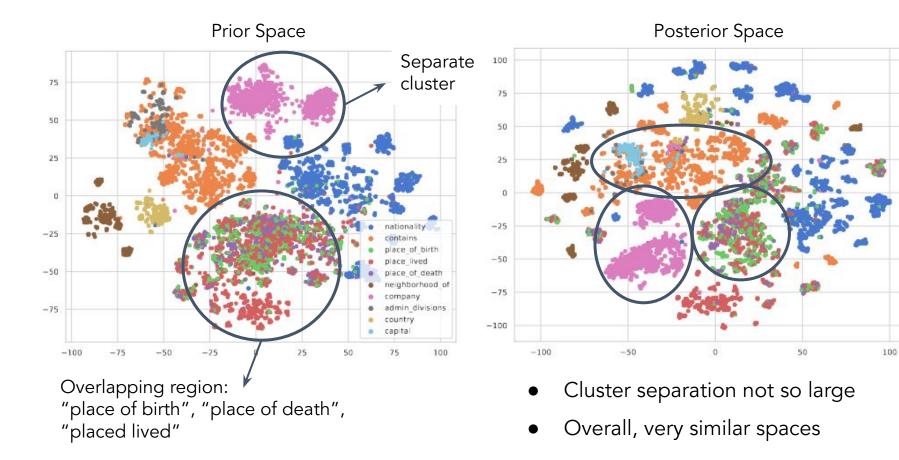
- t-SNE plots of TransE embeddings (prior space), VAE µ embeddings (posterior space)
- Top 10 most frequent relation categories

Prior Space

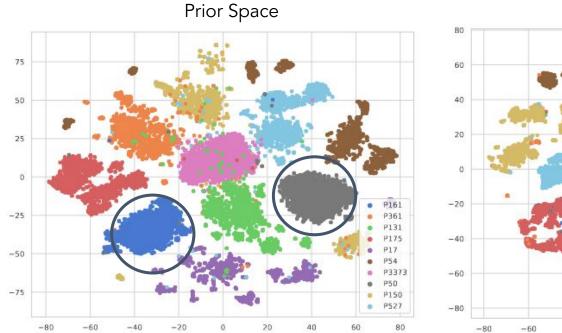


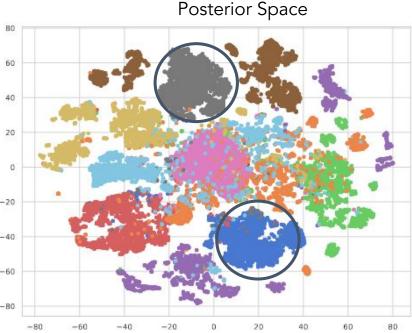






### ANALYSIS: LATENT SPACE (WIKIDISTANT)





- Similar results for WikiDistant
- "Part of" (orange), "has part" (cyan) sometimes not well separated

# CONCLUSIONS

- We presented a multi-task, probabilistic approach to bring close sentences containing similar KB pairs in DSRE
- + Combination of bag reconstruction and bag classification is proved effective
  - +4% boost in performance over the baseline when using Normal distribution priors
  - $\circ$  +8% boost in performance over the baseline when using KB priors
- + The sentence latent space becomes very similar to the space of the priors
- + Encoder-Decoder agnostic
- + No requirement for test pair KB representations
- + Improvement over a large pre-trained Language Model

### FUTURE WORK

- Combine this method with pre-trained language models/noise reduction methods
- Investigate other ways to create priors via other Link Prediction methods

# THANK YOU !





efstathia.christopoulou@manchester.ac.uk

https://fenchri.github.io

https://twitter.com/fenchri

### References

- Christoph Alt, Marc Hübner, and Leonhard Hennig. Fine-tuning pre-trained transformer language models to distantly supervised relation extraction. In ACL 2019.
- Iz Beltagy, Kyle Lo, and Waleed Ammar. Combining distant and direct supervision for neural relation extraction. In NAACL 2019.
- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In NeurIPs 2013.
- Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-drew Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. In SIGNLL 2016.
- Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yao-liang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Jie Zhou, and Maosong Sun. More data, morerelations, more context and more openness: A re-view and outlook for relation extraction. In AACL 2020.
- Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld. Knowledge-based weak supervision for information extraction of overlapping relations. In ACL 2011.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. 2013.
- Xu Han, Zhiyuan Liu, and Maosong Sun. Neural knowledge acquisition via mutual attention between knowledge graph and text. In AAAI 2018.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.Neural Computation,9(8):1735–1780, 1997.
- Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In AAAI 2017.
- Heng Ji and Ralph Grishman. Knowledge base population: Successful approaches and challenges. In ACL 2011.
- Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun.. Neural relation extraction with selective attention over instances. In ACL 2016.
- Pengda Qin, Weiran Xu, and William Yang Wang. DSGAN: Generative adversarial training for distant supervision relation extraction. In ACL 2018.
- Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their mentions without labeled text. In Machine Learning and Knowledge Discovery in Databases, 2010..
- Heng She, Bin Wu, Bai Wang, and Renjun Chi. Distant supervision for relation extraction with hierarchical attention and entity descriptions. In IJCNN 2018.
- Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya, and Partha Talukdar. RESIDE: Improving distantly-supervised neural relation extraction using side information. In EMNLP 2018.
- Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier.. Connecting language and knowledge bases with embedding models for relation extraction. In EMNLP 2013.
- Peng Xu and Denilson Barbosa. Connecting lan-guage and knowledge with heterogeneous representations for neural relation extraction. In NAACL 2019.
- Zhi-Xiu Ye and Zhen-Hua Ling. Distant supervi-sion relation extraction with intra-bag and inter-bagattentions. In NAACL 2019.
- Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guany-ing Wang, Xi Chen, Wei Zhang, and Huajun Chen. Long-tail relation extraction via knowledgegraph embeddings and graph convolution networks. In NAACL 2019.