

CONNECTING THE DOTS: DOCUMENT-LEVEL NEURAL RELATION EXTRACTION WITH EDGE-ORIENTED GRAPHS

The University of Manchester

Fenia Christopoulou, Makoto Miwa, Sophia Ananiadou efstathia.christopoulou@manchester.ac.uk

Introduction

Task: Document-level, intra- & inter-sentence Relation Extraction between concepts

Motivation: (i) Model a document as a graph structure (Quirk and Poon, 2017) (ii) Relations depend on different contexts: unique edge representations (iii) Edges: modelled via heuristics (natural document-level associations)

Idea: Model both intra- & inter-sentence relations between concept entities using inference via Edge-oriented Graphs

Example

Bilateral optic neuropathy due to combined ethambutol and isoniazid treatment. The case of a 40 - year - old patient who underwent an unsuccessful cadaver kidney transplantation and was treated with ethambutol and isoniazid is reported . A **bilateral retrobulbar neuropathy** with an unusual central bitemporal hemianopic scotoma was found.

 \cdots inter-sentence, – intra-sentence

EoG code

Walks code

Model Architecture

Nodes & Edges

Node mentions (\mathbf{n}_m) | entities (\mathbf{n}_e) | sentences (\mathbf{n}_s) = average over tokens | mentions | words

Initial edge representations:

• Mention-Mention: $\mathbf{x}_{MM} = [\mathbf{n}_{m_i}; \mathbf{n}_{m_j}; \mathbf{c}_{m_i, m_j}; \mathbf{d}_{m_i, m_j}] \rightarrow \text{Occur in the same sentence}$

Inference & Classification

- Generate/Update edge representations via walks in the graph (Christopoulou et al., 2018)
 - $f\left(\mathbf{e}_{ik}^{(l)}, \mathbf{e}_{kj}^{(l)}\right) = \sigma\left(\mathbf{e}_{ik}^{(l)} \odot\left(\mathbf{W} \ \mathbf{e}_{kj}^{(l)}\right)\right), \ l \ \text{edge length}$

- Mention-Sentence: $\mathbf{x}_{MS} = [\mathbf{n}_m; \mathbf{n}_s] \rightarrow Mention occurs in sentence$
- Mention-Entity: $\mathbf{x}_{ME} = [\mathbf{n}_m; \mathbf{n}_e] \rightarrow Mention$ associated with Entity (pre-defined)
- Sentence-Sentence: $\mathbf{x}_{SS} = [\mathbf{n}_{s_i}; \mathbf{n}_{s_j}; \mathbf{d}_{s_i, s_j}] \rightarrow \text{Direct: distance} = 1$, Indirect: distance > 1
- Entity-Sentence: $\mathbf{x}_{ES} = [\mathbf{n}_e; \mathbf{n}_s] \rightarrow At$ least one mention occurs in sentence

d: distance embedding, c: context embedding

 $\mathbf{e}_{ij}^{(2l)} = \beta \ \mathbf{e}_{ij}^{(l)} + (1 - \beta) \ \sum_{k \neq i,j} f\left(\mathbf{e}_{ik}^{(l)}, \mathbf{e}_{kj}^{(l)}\right), \ \beta \in [0, 1]$ • Classify Entity-Entity (EE) generated edge representations $\mathbf{y} = \operatorname{softmax} \left(\mathbf{W} \, \mathbf{e}_{\mathsf{EE}}^{(L)} + \mathbf{b} \right), \ L = 2^N, \ N \text{ iterations}$

Resu				Resu	lts			Effect of Edge Types		
	Method [CDR]	Overal	F1 (%) I Intra	Inter	Full: Fully-connected graph NoInf: No inference mechanism (walks)		Tunes	F1 (%)	65 8 60	
Independent	Gu et al. (2017)	61.3	57.2	11.7	Sent: Irain on single sentences	Luge	Luge Types	Overall Intra Inter	E EoG (SS) E EoG (SS direct)	
	Verga et al. (2018) Nguyen and Verspoor (2018)	62.1 62.3	-	-	EoG outperforms even models with extra			55.14 61.31 40.34	2 4 8 16 32 (a) Overall	
	EoG EoG (Full)	63.6 57.6	68.2 66.5	50.9 39.4	pairs	EOG —MM —MF	63.57 68.25 46.68 62.77 67.93 46.65 61.57 66.39 45.40			
	EoG (NoInf) EoG (Sent)	49.2 55.2	60.2 65.2	30.6 -	CDR (Li et al., 2016a): Manually annotated, 1,500 PubMed abstracts,	-MS -ES		62.92 67.55 44.74 61.41 66.44 43.04	60 EoG (SS direct) 2 4 8 16 32 (b) Intra-sentential	
+ Data/Tools	Zhou et al. (2016) Peng et al. (2016)	61.3 63.1	-		Chemical-Disease associations, binary	-SSindirect 59.70 -SS 57.41 -MM, ME, MS 60.46 -ES, MS, SS 56.86	59.7067.0928.0057.4165.451.59	$ \begin{array}{c} 60 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} 60 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} 60 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} 60 \\ \hline \\ $		
	Li et al. (2016b) Panyam et al. (2018) Zheng et al. (2018)	67.7 60.3 61.5	58.9 65.1 -	- 45.7 -	GDA (Wu et al., 2019): Distantly Super- vised, 30, 192 MEDLINE abstracts, Gene- Disease associations, binary		60.46 66.07 39.56 56.86 64.63 0.00	0 2 4 8 16 32 Number of inference steps (c) Inter-sentential		

Error Analysis

entities joined with conjunctions	 Following short exposure to oral prednisone []. Both presented in the emergency room with profound coma, hypotension, severe hyperglycemia, and acidosis. The etiology of pyeloureteritis cystica has long been [] The disease occurred subsequent to the initiation of heparin therapy [] 				
missing co-reference connections					
incomplete entity linking	Time trends in warfarin -associated hemorrhage . [] The proportion of patients with major and intracranial bleeding increased []				

Sentence-to-sentence edges (SS) potentially simulate co-reference links, by encoding the co-referring entities into the sentence representation

• EE edges fail on intra-sentence pair detection

• Usage of direct sentence edges (SS_{direct}) requires more inference steps • Document-level associations are crucial for both intra- and inter- RE • Removal of M nodes results in low inter-sentence performance

• Removal of S nodes disables inter-sentence pair identification

Conclusions

- Document-level graphs can be created with heuristics
- Intra- pairs can be supported by inter- associations (SS edges)
- Longer inference steps are weaker than shorter ones
- S nodes enable the construction of shorter edge representations