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Introduction

Relation Extraction
The task of identifying interactions between named entities

• Entity-based Relation Extraction

mention: unique named entities
concept: multiple entity mentions
(aliases) mapped to the same concept

• Context-based Relation Extraction

Intra-sentence: Entities in the same sentence
Inter-sentence: Entities in different sentences
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Motivation

• Local dependencies: within sentences
• Dependency parsing [Culotta and Sorensen, 2004; Liu et al., 2015]
• Adequate for intra-sentence relations

• Non-local dependencies: across sentences
• Coreference [Ma et al., 2016]
• Discourse dependencies
• Required for inter-sentence relations

• Relations depend on both local and non-local dependencies
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Proposed Approach

IDEA: Utilise local and non-local dependencies in combination

• Represent a snippet as a graph
• Words = nodes
Edges = local, non-local dependencies

• Incorporate GCNN for graph encoding
• Multi-instance Learning for concept-level relation extraction

Task Definition

• Inter-sentence, concept-level relation extraction
• Input: entity concepts (c1, c2)

entity mentions for each concept (cm1
1 , . . . , cmi

1 ), (cm1
2 , . . . , cmj

2 )

textual snippet t
• Output: relation r between two concepts (c1, r, c2) in snippet t
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Proposed Approach: Architecture

Input: Marked named entity concepts and their mentions

Sahu et al. (2019) Inter-sentence Relation Extraction with Graph Convolutional Neural Network 4 / 11



Proposed Approach: Architecture

Input: Marked named entity concepts and their mentions

Node representations are built as the concatenation of
• Word representations
• Relative Position representations from closest target mention
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Proposed Approach: Architecture

• Graph construction → map entire document to a graph
• Words = nodes
Edges = semantic, syntactic, sequential dependencies

• Combination of intra- and inter-sentence information
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Proposed Approach: Architecture

Local dependencies: Non-local dependencies:
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Proposed Approach: Architecture

Local dependencies:

• Syntactic dependency → clues for
intra-sentence relations

• Adjacent word → sequential information

• Self-node → node semantic information

Non-local dependencies:

• Adjacent sentence → discourse dependencies
[Quirk and Poon, 2017]

• Coreference → helpful for both intra- and
inter- sentence relations
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Proposed Approach: Architecture

GCNN [Marcheggiani and Titov, 2017]: xk+1
i = f

 ∑
u∈ν(i)

(
Wk

l(i,u) xku + bk
l(i,u)

) ,
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GCNN [Marcheggiani and Titov, 2017]: xk+1
i = f

 ∑
u∈ν(i)

(
Wk

l(i,u) xku + bk
l(i,u)

) ,

k-stacked GCNN blocks
l(·) labelled edge type tune number of parameters keeping

v(i) neighboring nodes top-N most frequent types & merging rare types
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Proposed Approach: Architecture

MIL Relation Classification [Verga et al., 2018]:

xheadi = W(1)
head

(
ReLU

(
W(0)

head xKi
))

,

xtaili = W(1)
tail

(
ReLU

(
W(0)

tail xKi
))
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Proposed Approach: Architecture

MIL Relation Classification [Verga et al., 2018]:

xheadi = W(1)
head

(
ReLU

(
W(0)

head xKi
))

,

xtaili = W(1)
tail

(
ReLU

(
W(0)

tail xKi
)) 2-layer FFNN

for each argument (head/tail)
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Proposed Approach: Architecture

MIL Relation Classification [Verga et al., 2018]:

scores(ehead, etail) = log
∑

i∈Ehead, j∈Etail
exp

((
xheadi R

)
xtailj

)
,

bi-affine pairwise scoring
aggregate mention pairs (x) →

concept pairs (e)
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Datasets

1. CDR [Wei et al., 2015]
• Chemical-Disease Relations (binary)
• Abstract-level annotations
• manually annotated

2. CHR [new dataset]
→ limited abstract, concept-level datasets

• CHemical Reactions (binary)
• Abstract-level annotations
• distantly supervised

⋆ Abstracts: PubMed
⋆ Chemicals: THALIA [Soto et al., 2018]
⋆ Relations: BioChem4j [Swainston et al., 2017]

Data Item Train Dev. Test

CDR
# Articles 500 500 500
# Positive pairs 1,038 1,012 1,066
# Negative pairs 4,198 4,069 4,119

CHR
# Articles 7,298 1,182 3,614
# Positive pairs 19,643 3,185 9,578
# Negative pairs 69,843 11,466 33,339

Table 1: Statistics of the CDR and CHR datasets.
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Experimental Settings

Tools

• Enju dependency parser: predicate-argument structures [Miyao and Tsujii, 2008]
• Stanford CoreNLP for coreference [Manning et al., 2014]
• GENIA Sentence Splitter for sentence splitting
• GENIA Tagger for tokenization [Tsuruoka et al., 2005]

Baselines (no dependecies)

• CNN-RE: Re-implementation [Kim, 2014]
• RNN-RE: Re-implementation [Sahu and Anand, 2018]

✓ Adapt CNN-RE and RNN-RE to use bi-affine pairwise scoring
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Results

Data Model P (ҍ) R (ҍ) F1 (ҍ)

CDR

Xu et al. [2016] (SVM) 59.6 44.0 50.7
Zhou et al. [2016] (SVM ҏ LSTM ҏ Kernel) 64.8 49.2 56.0
Gu et al. [2017] (CNN ҏ ME) 60.9 59.5 60.2
Li et al. [2018] (RPCNN) 55.1 63.6 59.1
Verga et al. [2018] (Transformer) 49.9 63.8 55.5
CNN-RE 51.5 65.7 57.7
RNN-RE 52.6 62.9 57.3
GCNN 52.8 66.0 58.6

Table 2: CDR test set in comparison with the state-of-the-art.

• 3rd best compared to systems without additional enhancements
(joint NER training [Verga et al., 2018], post-processing [Gu et al., 2017])

• −1.6% [Gu et al., 2017] → separate intra & inter extraction, feature-based inter-sentence model

• −0.5% [Li et al., 2018] → mention-pairs treated separately, usage of entity indicators
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Verga et al. [2018] (Transformer) 49.9 63.8 55.5
CNN-RE 51.5 65.7 57.7
RNN-RE 52.6 62.9 57.3
GCNN 52.8 66.0 58.6

CHR
CNN-RE 81.2 87.3 84.1
RNN-RE 83.0 90.1 86.4
GCNN 84.7 90.5 87.5

Table 3: CDR and CHR test set in comparison with the state-of-the-art.

• Outperforms other encoders (CNN, RNN) on both datasets
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Analysis: Number of edge types
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Figure 1: CDR dev. set: top-N most frequent edge types (rest considered as a single “rare” type).

• Keep all edges, adjust # edge types (equal to # parameters)
• Top-4 different edge types → performs best
• Keeping predicates and adjective types → most important
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Analysis: Ablation

Model Overall Intra Inter
GCNN (best) 57.19 63.43 36.90
− Adjacent word 55.75 62.53 35.61
− Syntactic dependency 56.12 62.89 34.75
− Coreference 56.44 63.27 35.65
− Self-node 56.85 63.84 33.20
− Adjacent sentence 57.00 63.99 35.20

Table 4: Ablation analysis on the CDR development set. F1-score (%), for intra- (Intra) and
inter-sentence (Inter) pairs.

• Intra pairs influenced more by local dependencies (syntax, adjacent word)
• Inter pairs identification supported by all edges
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Conclusions and Future Work

Conclusions

• Proposed a GCNN model for inter-sentence relation extraction
• Creation of a Chemical-driven distantly supervised corpus

• Motivation: limited number of abstract, concept-level datasets

• Effectiveness of local and non-local dependencies on inter-sentence pairs

Future Work

• Joint NER traning
• Sub-word embeddings [Sennrich et al., 2016]
• Application to other domains
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Thank you!
Questions?

efstathia.christopoulou@manchester.ac.uk
https://twitter.com/NactemNlp

Corpus

https://twitter.com/NactemNlp


Backup slides

Data pre-processing:

• GENIA sentence splitter
• GENIA tagger
• Merge common Knowledge Base IDs into the same concept
• Remove self-relations (between a concept and itself)
• CDR: Hypernym filtering
• CHR: Extraction of both directions for each instance
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